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Abstract

In this Letter we study an effect of synchronization of clusters with the same average frequency in interacting extended
systems. We show that the type of sychronization is a consequence of frequency locking in each point of the system.
0 2004 Elsevier B.V. All rights reserved.

Inhomogeneity is a common property of real dis- are called “frequency clusters”. This type of partial
tributed systems and plays an essential role in their synchronization can be called frequency synchroniza-
behavior1,2]. Dependence of a system parameter on tion (FS). The frequency clusters have been found both
spatial coordinates often leads to formation of clus- in inhomogeneous chains oflssustained oscillators
ter structures. A cluster is considered to be a group of [5,7,8]and in self-sustained oscillating med&9].
oscillators (in spatially discrete systems) or a region  Two distributed systems can demonstrate an effect
in continued systems which is characterized by some of mutual synchronization when they interact. Effects
constant (or almost constant) quantitative characteris- of synchronization of spatio-temporal behavior of in-
tic of oscillations. Distributed self-sustained oscilla- teracting distributed systems are described in a number
tory systems with natural frequencies varying along of publicationd10-13] However, the problem of mu-

a spatial coordinate can serve as models for different tual synchronization of active media in the regime of

phenomena in physics, chemistry and biolddpy4]. frequency clusters has not been considered in the liter-
Such systems can demonstrate a phenomenon of parature up fill now.
tial synchronization which manifests itself in occur- In the present work we study an effect of synchro-

ring of regions with equal average frequencies, which nization of frequency clusters in interacting systems
and determine FS region on the plane of control para-
meters. We argue that FS of clusters in spatial struc-
* Corresponding author. tures is a direct consequence of the phenomenon of
E-mail address; tomaszka@p.lodz.{T. Kapitaniak). frequency locking which occurs in each point of the
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system. As an example of extended system we con-
sider the Ginzburg—Landau equation in the following

7

form: 2 3 4 (a)
1
a,:iw(x)a+E(l—lalz)a-i-gaxx, (1)
) . 0.00 005 010 015 020 025 0.30
wherei = +/—1; anda(x, t) is the complex amplitude
of oscillations that depends on timeand the spatial 0.20

variablex, a, = da/dt, axx = 3%a/dx2. The function
w(x) assigns inhomogeneity of the distribution of nat-
ural frequency along the spatial variableéWe use the A
linear dependence(x) = Ax/I, wherel is the length v
of the system, ana is the parameter of the frequency
mismatch in the boundary points of the system. The
diffusion coefficient is supposed to have real values o 10 20 30 40 50
only, i.e., we neglect spatial interactions of the reactive
type. The chosen model corresponds to an inhomoge-Fig. 1. A fragment of one-parameter diagram of the regimes in the
neous chain of quasi-harmonic oscillat¢7§ under system(1) at g = 0.9 (a) and the corresponding structures of fre-
limited transition to a continuous spatial coordinate, dUency clusters (b). Numerals mark the numbers of the clusters.
. .. Regiong3 relates to the intermediate structure with three clusters.
We explore the system with finite lengthand free
boundary conditionsi, (x, t)|y=o.; = 0. Initial condi-

tions are chosen randomly near a homogeneous state.This means that all points of the system continue

(b)

Two systemg1) coupled in the following way: to oscillate with equal frequencies but not in-phase.
) 1 2 This is the regime of global frequency synchroniza-
ar =iwy(x)a + 5(1 —lal®)a + graxx +&(b — a), tion. With further increasing oft the regime of global
. 1 ) frequency synchronization breaks and is transformed
by = iwp(x)b + 5(1 — [b19)b + gabxx +e(a = b), into the regime of partial (cluster) synchronization.
(2 The number of clusters depends on the valuedof

wherea(x,t) andb(x,t) are complex amplitudes of  (at a given fixed diffusion coefficieng) [9]. Simi-

the first and the second system, anis the coupling larly to the case of coupled self-sustained oscillators
parameter interact in each point of the space.(2). [7] the observed structures of clusters can be divided
were numerically integrated with a implicit scheme of into “perfect” and “imperéct” (“intermediate”). In the
forward and backward iteratiorj44]. For both sys-  case of intermediate clusters the frequency inside a
tems we calculated the dependence of the average frecluster slightly varies and there are no precise bound-

quency of oscillations in each point of the system aries between them (see c&én Fig. 1(b)). For the
der2 perfect structures the average frequemyinside a
212 =< - > cluster remains constant, and the boundaries between
dt clusters are sharp (cases 1, 2, 3 and 4)Fim 1(a)
on the spatial coordinate Hereg is the instantaneous  we built regions of the mismatch parametérwith
phaseg € (—oo; 00), () denotes time averaging. qualitatively different structures of clusters. The less
We start with considering the behavior of the sin- mismatch corresponds to a smaller number of clusters.
gle system(1). When the mismatch is absent,= 0, The small mismatch leads to the global synchroniza-

Eq. (1) has a homogeneous stationary solution which tion when all points of the system oscillate with the
corresponds to a standing wave regime in the homoge-same frequency (region 1 Fig. 1(a)) that is approx-
neous system. The frequency mismatch induces dis-imately equal taA /2. With increasing frequency gra-
tortion of the phase of oscillations along the spatial dientA /I, from A >~ 0.045 we observe a sudden re-
coordinatex. While A is small, the stationary solution  building of the spatial structure resulting in the appear-
of Eq. (1) still exists but it is no longer homogeneous. ance of two frequency clusters (region 2). Then, from
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A being approximately equal taTl the spatial struc- 0.20 0.20
ture is transformed into three clusters (region 3). At 0.15 0.15
A ~ 0.2 the three-cluster structure becomes interme- C}S 0.10 | - 0.10 |
diate and gradually changes to the perfect four-cluster 0.05 0.05 k
structure (region 4). With further increasing of the fre- 000 Lo v 0.00 L vt
guency gradient more and more short cluster structures 0 10 20x30 40 50 0 10 20X30 40 50
appear successively. Regions of two consequent struc-
tures are divided by the region with an intermediate 0.20 " 0.20
cluster structure. Inside each region markedrig. 1 0.15 0.15 |
the frequency of each cluster and their location can & .10 | £ 0.10 |
vary but their number remains constant. G 0.05 L 0.05
Now let us consider the two coupled systef®@)in

. . .00 0.00
the regime of frequency clusters. We explore the dis- 0 10 20 30 40 50 0 1020 30 40 50
tribution of the average frequencig » along spatial X X
coordinates in both systems depending on the mis- Fig. 2. Dependences aiverage frequencie®; » on the spatial
match value§ = A1 — Az and the coupling para-  coordinatex for fixed § = —0.08 and different values of the cou-
meters. The lengths of both systems were chosen as pling strengthz =0 (&), = 0.005 (b),e =0.03 (c),& = 0.045 (d).

| — 50 and the diffusion coef‘ficiemgl —g,=09 Curves 1 and 2 correspond to the first and second medium. Dashed
Ve fix th tefs — 0.16 dch th ) |. lines in (d) repeat the distributions of frequencies for uncoupled me-
e 11X the parame 1 =0.16 ana change the values dia from (a).

of A and coupling. At ¢ = 0 in the neighborhood of

Ao = A1, both systems demonstrate spatial structures 0.050

with three frequency clusters. However,Af £ A,

the average frequencies in two systems do not coin- 0.040 |

cide. For a larger value of the mismatch paraméter

the number of clusters in the second medium becomes

N =2 or N =4 depending on the sign 6f € 0.030 |
Let us choose the value of the mismaséck —0.08 3-4

related to the structure of different numbers of per- 0.020 ¢

fect clusters in both systems when they are uncoupled

(Fig. 2a)). At ¢ # 0 the elements of the systems tend 0.010 |

to synchronize their oscillations at equal frequencies.

With increasing: the synchronization begins from the 0.000 ; i

first boundary of the systems (at small since in -0.20 -0.10 0.00 0.10 0.20

this case the difference between natural frequencies

w1 — w2 is minimal. This first step of synchronization

leads to the formation of intermediate cluster struc- Fig. 3. Region of clusters synchronization & parameter plane

tures. Then the process of synchronization involves &t 41 = 0-16: 81,2 = 0.9). Grey colour selects the region of fre-

. quency synchronization between subsystems in each point of the
more and more elements of the systems. While COU- media. Dashed lines mark the area with the equal numbers of clus-
pling is small the number of clusters in both systems ters in both media. Figures denotemnumbers of clusters in the first
remains differentFig. 2(b), (c)). Starting with a cer-  and second medium.
tain value of the coupling strength dependences of
average frequencies on the spatial coordi2ie(x) plane. There we built two regions. The first one re-
become completely identicaFig. 2(d)). The resulted lates to complete cluster synchronization 3-3 (it is
synchronized cluster structures are similar to those ob- marked by grey colour) when the spatial synchroniza-
served at = 0, A = 0 when the both media contains tion of cluster structures in both systems is accom-
three clusters. panied by exact coincidence of frequencies in each

Fig. 3 demonstrates a fragment of the diagram of point of the space?1(x) = £22(x). In this case the
the regimes for two coupled syster{®) on theé—e synchronization of spatial structures is a direct con-
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frequencies of uncoupled ones, in the case of interact-

ing media the synchronization frequency can be above

them (this can be seen froRig. 2(d)). Generally, the References
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