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Abstract

Impacts in mechanical systems are an object of interest for many scientists in the world. In this paper, we present
detailed investigations of the dynamical behavior of the system consisting of a massless cantilever beam with two con-
centrated masses. The maximum displacement of one of the masses is limited to the threshold value by a rigid stop,
which gives rise to non-linearity in the system. Impacts between the mass and the basis are described by a coefficient
of restitution. The conducted calculations show a good agreement of the results obtained with two qualitatively differ-
ent methods of behavior analysis of the system under consideration, namely: the Peterka’s method and the method of
numerical integration of motion equations. It has been observed that stable solutions describing the motion with
impacts of a two-degree-of freedom mechanical system exist in significantly large regions of the parameters that describe
this system. The location and size of periodic motion regions depend strongly on mutual relations between the excita-
tion force frequency and the system eigenvalues. In order to obtain stable and periodic motion with impacts, the system
parameters should be selected in such a way as to make the excitation force frequency an even multiple of the
fundamental eigenvalue and to make the higher eigenvalue an even multiple of the excitation force frequency. These
two conditions can be applied in designing mechanical systems with impacts. This information is even of more
significance since it has turned out that the system exhibits some adaptability, owing to which stable solutions exist even
if the above-mentioned conditions are satisfied only approximately.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Systems in which impacts of matching elements occur play an important role in the theory of vibration of mechan-
ical systems. They became an object of investigation already in the mid 1950s and since then the interest in them has
been still growing. It is not surprising as vibro-impact motion characterizes a large class of physical systems. For exam-
ple, printing hammers, tooling machines, gear boxes, and heat exchangers all involve motion of an object which is lim-
ited by a stop.
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A vibro-impact system is usually modeled as a spring-mass system with amplitude constraint. In a number of studies,
one degree of freedom (1-DOF) has been used. Impact gives rise to nonlinearity and discontinuity so that vibro-impact
systems can exhibit rich and complicated dynamic behavior. In recent years, dynamics of mechanical systems with
impacts have been the subject of several investigations, and many new theoretical issues have been advanced in research
of vibro-impact problems. From the viewpoint of application of impact oscillators, the regularity of their motion is of
special importance. Therefore, regions of stable regular behaviors of such systems have become an object of extensive
studies. Shaw and Holmes [36] analytically determined the stability of periodic solutions and identified chaotic features
such as period-doubling, horseshoes and strange attractors. Moon and Shaw [28] considered a single-DOF approach to
modeling a vibro-impact cantilever beam experiment, also by reducing the model to a single mode. In this case, the sys-
tem was considered as piecewise linear, and the single-DOF model was obtained using the Galerkin method applied to
each linear part. Further analysis and experimental studies were conducted by Shaw [35], who used a cantilever beam
contacting a stiff stop to compare cases of moderate and large stiffness ratios (the ratio between the stiffness of the first
beam bending mode and the stiffness at the stop). For the system, high damping to discourage contribution to the
response from higher beam modes was considered. Experiment in this area was also conducted by Fang and Wickert
[17], who used a cantilevered beam with a tip mass to demonstrate period-one, period-two and chaotic motion. A fun-
damental work devoted to the dynamical behavior of 1-DOF oscillator impacts is the study by Nordmark [29]. A survey
of modern methods used for modeling systems with impacts and the analysis of their motion, a grazing incidence as a
reason of non-periodic motion in an impact oscillator, effects of a low velocity impact, and also a comparison between
numerical and experimental results was presented. Some classical, analytical investigations concerning impact oscilla-
tors and piecewise smooth systems were also carried out by Arnold [2], Ivanov [22] and Feigin [18]. The use of com-
puters has enabled detailed studies of various phenomena, like chaotic motion, Feigenbaum scenario, sudden
changes in a chaotic attractor intermittent to chaos, Devil’s attractors and different types of grazing bifurcations or bor-
der-collision bifurcations. These phenomena were investigated, for example, by Blazejczyk-Okolewska et al. [5], Chin et al.
[9], de Weger et al. [15], di Bernardo et al. [16], Isomaki et al. [23], Peterka and Vacik [33], Thomson and Ghaffari [37].

All of the mentioned works assume a 1-DOF system, and the corresponding experiments have been restricted to con-
firm this assumption as closely as possible. Studies on multi-DOF systems are more limited. Aidanpaa and Grupta [1]
analyzed the one-sided impact motion of a 2-DOF impact vibrator. They studied an influence of system parameters
and compared the dynamical response behavior of 2-DOF with that of a single-DOF. Van de Vorst et al. [38] built a finite
element model and conducted an experiment involving a flexible beam supported by leaf springs at either end and con-
tacting a Hertzian spring at its mid-point. Numerical and experimental results are shown to agree fairly well. Some special
attention should be also drawn to the studies by Bapat [3], Cempel [8], Dabrowski [13], Masri [26], Masri and Caughey
[27], Popplewell and Liao [34], Peterka [31], Peterka and Blazejczyk-Okolewska [32] that include numerical, theoretical
and experimental analyses of vibro-impact dampers, by Koizumi [25] and Park [30] that describe the application of
impact oscillators as models of molding machines, by Blazejczyk-Okolewska et al. [5], Foale and Bishop [19] as well
as Hinrichs et al. [21] that comprise the investigations on the effect of dry friction on responses of simple models of
mechanical systems with impacts. In solving the problem of seeking regions of the existence of periodic motion with
impacts of 2-DOF systems, the method presented by Peterka [31], below referred to as the ‘‘Peterka’s method’’, turned
out to be very useful. This method applied to systems composed of two oscillators in series was presented in [1]. The
application of this method for a system that consists of two independent oscillators and some exemplary results of the
numerical studies that confirm its correctness and usefulness have been shown by Czolczynski and Kapitaniak in [10–12].

The number of these studies is a proof of universality of the impact phenomenon that occurs in various technical
devices (e.g., see [24] and the references therein) and of importance of computer modeling of such devices. While
describing the phenomena that take place in vibro-impact systems (e.g., see [7,20]), one can encounter some difficulties
in modeling an impact. This phenomenon can be modeled in various ways depending on the physical conditions that are
to be considered (generally, two approaches are known, namely: (i) impact oscillators which assume an instantaneous
contact with a coefficient of restitution model, (ii) piecewise systems, which model the contact as a linear or Hertzian
spring, leading to separate equations of motion for in and out of contact cases). To model the system in the interval
between impacts, two extreme approaches are commonly used, that is to say: a model consists of light elastic elements
and rigid elements with inertia, or a model has a form of an elastic element only, with a continuous and uniform mass
distribution, and an impact occurs directly against this element. In the latter model, there are no rigid mass elements.
Let us notice that during motion of systems with impacts, their trajectories can tend to one of a few co-existing attrac-
tors (e.g., see [6]). Neglecting masses of elastic elements can lead to a wrong determination of asymptotic solutions to
motion equations and, due to sensitivity to initial conditions (e.g., see [6,14]), to a false identification of the attractor the
trajectory tends to. Another important aspect is a prediction of the nature of motion of a system with impacts: whether
it is going to be regular (periodic), or rather chaotic – so fashionable nowadays but not necessarily bringing happiness
to the designer of industrial devices. Simple calculations show that inconsiderate negligence of the spring mass (and a



B. Blazejczyk-Okolewska et al. / Chaos, Solitons and Fractals 40 (2009) 1991–2006 1993
limitation in the number of degrees of freedom that follows) can lead to a false identification of those regions of param-
eters for which the system motion is periodic.

And thus a problem arises: which physical model is suitable for computer-aided-design of systems in which there are
both a heavy rigid element and a spring of a considerable mass (which requires additional degrees of freedom to be
taken into consideration in the model)? In initial analysis of this system, a physical model of the beam or the elastic
weightless shaft that carries a finite number of concentrated bodies can be used. The present study includes analytical
investigations of the 2-DOF system, connected adequately by means of elastic structures (the way of connection com-
plies with the principles of classification of mechanical systems with impacts described by Blazejczyk-Okolewska et al. in
[4]). The maximum displacement of one of the masses is limited to the threshold value by a rigid stop, which gives rise to
non-linearity in the system. Impacts between the mass and the basis are described by a coefficient of restitution. In the
calculations, two qualitatively different methods of the analysis of behavior were used, namely: the Peterka’s method
[31] and the method of numerical integration of motion equations. During the investigations, special attention was paid
to the determination of regions of periodic motion with impacts and stability of periodic solutions. This analysis will be
helpful in modeling systems with impacts of non-negligibly high mass of elastic elements. In further investigations, the
number of concentrated masses in the system will be increased to such a number that will enable us to obtain a good
agreement with the results obtained with the finite element method when introduced into the calculations of motion
equations by means of the numerical integration method. In the future, the authors are going to compare the results
obtained with experimental results as well.
2. Physical and mathematical model of the system

The object under investigation is a 2-DOF vibrating system presented in Fig. 1a. The system is composed of two
concentrated masses m1 and m2 connected with a basis by means of light linear springs with coefficients of stiffness
k1 and k2. Additionally, the masses are connected with each other by means of a spring with a coefficient of stiffness
k12. Because of the existence of the spring k1, the system under consideration differs from classical 2-DOF vibrating
systems, whose dynamical behavior was considered in previous publications (e.g., see [1]). The spring k1 has been intro-
duced so that in the mathematical model of the system under analysis there are three coefficients of stiffness, that is to
say, their number is equal to the number of different terms in the symmetrical stiffness matrix of the 2-DOF mechanical
system. Let us notice that the spring system, which will thus arise, will be the basic spring 2-DOF system, according to
the principles of classification of mechanical systems with impacts described in [4]. It is worth mentioning that thanks to
it, the system under analysis can be used, for instance, to investigate the dynamical behavior of the system consisting of
a massless cantilever beam with two concentrated masses. In the simplified (discrete) physical model, the mass m2 can
represent the existing (positive) beam mass in the real system. The mass m1 has a fender that can impact against the
basis during motion. If the system is in the static equilibrium position, then the lower part of the mass m1 (fender)
is at the distance �d from the basis. A harmonic excitation force, whose amplitude is proportional to the square of
Fig. 1. 2-DOF system with impacts and external excitation; (a) dimensional form; and (b) dimensionless form.
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its circular velocity, acts on the mass m1 – like in the case of a force excited by the centrifugal force acting on the rotat-
ing rotor.

In the time intervals between impacts, the motion of the system presented in Fig. 1a is described by the following
equations
m1
d2�x1

dt2
þ ðk1 þ k12Þ�x1 � k12�x2 ¼ F x2 cosðxt þ uÞ;

m2

d2�x2

dt2
� k12�x1 þ ðk2 þ k12Þ�x2 ¼ 0:

ð1Þ
While trying to write these equations in the dimensionless form, a problem of selection of the vibrating 1-DOF system,
whose mass and coefficient of stiffness (and hence, the frequency of natural vibrations) would be the reference quantities
for masses and coefficients of stiffness of the 2-DOF system, arose. It was decided it would be the system presented in
Fig. 2, with the following values of mass and stiffness
k ¼ k1 þ
k12k2

k12 þ k2

;

m ¼ m1 þ m2;

a2 ¼ k
m
:

ð2Þ
Multiplying Eq. (1) by m and dividing it by kF, after some simple transformations we obtain dimensionless equations of
motion
l1€x1 þ r1x1 � r12x2 ¼ g cosðgsþ uÞ;
l2€x2 � r12x1 þ r2x2 ¼ 0;

ð3Þ
where

l1 = m1/m, l2 = m2/m, r1 ¼ ðk1 þ k12Þ=k; r2 ¼ ðk2 þ k12Þ=k; r12 ¼ k12=k; g ¼ x=a,
s = at – dimensionless time,
x1 ¼ �x1m=F ; x2 ¼ �x2m=F – dimensionless displacements,
€x1 ¼
d2x1

ds2
; €x2 ¼

d2x2

ds2
;

d ¼ �dm=F – dimensionless distance between the impacting surface of the mass m1 and the basis.
Fig. 2. System of reference.
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Fig. 1b shows the system under analysis in the dimensionless form. The impact of the mass m1 with the basis is mod-
eled applying the well-known Newton’s law
vþ1 ¼ �krv�1 ; ð4Þ
where v�1 denotes the velocity before impact and vþ1 – the velocity after impact; kr is the coefficient of restitution.
To integrate Eq. (3), the Runge–Kutta method was employed; the moments of impacts were established using the

method of successive approximations. Eqs. (3) and (4) provide information on the system behavior in the form of time
series, phase planes, Poincare maps and bifurcation diagrams.
3. Periodic solutions

From the designer’s point of view, the information for which sets of parameters characterizing the system
(l1,l2,r1,r2,r12,g,kr,d) its motion is periodic is essential. In order to acquire this information, we can apply
the so-called Peterka’s method [31]. In its original form, this method could be used for 1-DOF oscillators with
impacts, or to the systems consisting of two identical oscillators impacting each other. The authors have generalized
this method in numerous ways, which have been discussed in previous publications (see [10–12] and the references
therein). Below, a successive variant of this method, determined for the system of oscillators under consideration, is
presented.

As it is known, the solutions to Eq. (3) can be written in the form
x1ðsÞ ¼ A11 cosða1sþ w1Þ þ A12 cosða2sþ w2Þ þ B1 cosðgsþ uÞ;
x2ðsÞ ¼ A21 cosða1sþ w1Þ þ A22 cosða2sþ w2Þ þ B2 cosðgsþ uÞ:

ð5Þ
The eigenvalues a1, a2 of the system can be obtained as the roots of the characteristic equation
ðr1 � l1a
2Þðr2 � l2a

2Þ � r2
12 ¼ 0: ð6Þ
They can be expressed as follows
a2
1;2 ¼

r1l2 þ r2l1ð Þ �
ffiffiffiffi
D
p

2l1l2

;

where
D ¼ ðr1l2 þ r2l1Þ
2 � 4l1l2ðr1r2 � r2

12Þ:
The relations between the amplitudes of free vibrations are given by the eigenvectors
U1 ¼
A21

A11

¼ r1 � l1a
2
1

r12

;

U2 ¼
A22

A12

¼ r1 � l1a
2
2

r12

:

ð7Þ
The amplitudes of forced vibrations are written as
B1 ¼
g2ðr2 � l2g

2Þ
ðr1 � l1g2Þðr2 � l2g2Þ � r2

12

;

B2 ¼
g2r2

12

ðr1 � l1g2Þðr2 � l2g2Þ � r2
12

:

ð8Þ
While seeking the conditions which must be fulfilled to yield periodic motion of the system with impacts, it was as-
sumed that the time interval between two subsequent impacts is equal to a multiple of the forcing period T ¼ 2p

g ,
which means
x1ð0Þ ¼ x1

2pn
g

� �
;

x2ð0Þ ¼ x2

2pn
g

� �
;

ð9Þ
where n = 1,2,3, . . ..
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Introducing (3) into (9) and employing (7), it can be found that
w1 ¼ �
pna1

g
;

w2 ¼ �
pna2

g
:

ð10Þ
The equations describing the relations between velocities
v1ð0Þ ¼ �krv1
2pn
g

� �
;

v2ð0Þ ¼ v2
2pn
g

� � ð11Þ
provide (together with Eq. (7)) the system of two equations
a11 a12

a21 a22

� �
A11

A12

� �
¼

b1

b2

� �
ð12Þ
where
a11 ¼ �a1 sin w1 þ kr sin
2pn
g

a1 þ w1

� �� �
;

a12 ¼ �a2 sin w2 þ kr sin
2pn
g

a2 þ w2

� �� �
;

a21 ¼ a1U1 sin
2pn
g

a1 þ w1

� �
� sin w1

� �
;

a22 ¼ a2U2 sin
2pn
g

a2 þ w2

� �
� sin w2

� �
;

b1 ¼ ð1þ krÞg sin u;
b2 ¼ 0;
and from which we can obtain two formulas describing the unknown amplitudes of free oscillations A11 and A12 as
functions of the phase shifting u. After substituting these formulas and solution (3) into the condition of impact
x1ð0Þ ¼ �d; ð13Þ
we can determine the phase shifting u as the unknown in the equation
Ks sin uþ Kc cos uþ d ¼ 0; ð14Þ
where
Kc ¼ B1;

Ks ¼
a22 cos w1 � a21 cos w2

a11a22 � a12a21

ð1þ krÞgB1:
Having performed some simple transformations, we obtain the solution to Eq. (14) in the form
sin u ¼
�dKs þ Kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

s þ K2
c � d2

q
K2

s þ K2
c

;

cos u ¼
�dKc � Ks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

s þ K2
c � d2

q
K2

s þ K2
c

:

ð15Þ
Substituting (15) into the formulas describing A11 and A12 as functions of the phase shifting u, we can finally calculate
these amplitudes. There exists, of course, another pair of solutions (15) as well, with the opposite signs in front of the
root, however its substitution yields (as it appeared during the numerical calculations) an unstable solution to the equa-
tion of motion. Therefore, this pair will be neglected in further considerations.

Solutions (15) are real when K2
s þ K2

c P d2, which can be written as
�q 6 d 6 q; ð16Þ
where
q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

c þ K2
s

q
¼ B1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
; K ¼ Ks=B1:
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The solution describing the motion with impacts must fulfill other two conditions, namely

• before impact, the velocity of the mass m1 must be negative
v1

2pn
g

� �
< 0; ð17Þ
• during the motion in the time interval between two subsequent impacts, the mass m1 cannot penetrate the basis
x1ðsÞ > �d for 0 < s <
2pn
g
: ð18Þ
Conditions (17) and (18) should be checked numerically for the assumed set of parameters describing the system and for
many values of the argument s varying with a small step in the range 0 < s < 2pn/g.
4. Stability of periodic motion

As a result of external disturbances, some parameters of motion may alter at the moment of impact: velocities of the
masses, displacement of the mass m2 from its static equilibrium position, and phase shifting of the external forcing.
Fig. 3 shows two pairs of trajectories – the undisturbed (u1,u2) and disturbed (d1,d2) ones, in the coordinate system with
Fig. 3. Undisturbed (u1,u2) and disturbed (d1,d2) trajectories of the mass m1 and m2; example for n = 1.
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gs on the horizontal axis, and displacements x1 + d,x2 on the vertical axis. Below, the function cos(gs + u) of the exter-
nal forcing is shown additionally.

In the undisturbed case, the mass m1 hits the basis at gs = 0,2p, . . . (example for n = 1). When the motion is dis-
turbed, the instant of impact receives an increment, which is denoted by D1u at the instant s = 0; the velocities after
impact receive increments denoted by D1v1 and D1v2; the displacement of the mass m2 at the moment of impact receives
an increment denoted by D1x2. On the subsequent impact, the increments were denoted as D2u,D2v1,D2v2, and D2x2. If
these increments decrease in time, then the motion of the system is stable.

At the instant s = 0, the displacements of masses and their velocities after impact can be written in the form
x1ð0Þ ¼ �d ¼ A11 cos w1 þ A12 cos w2 þ B1 cos u;

x2ð0Þ ¼ xþ2 ¼ A21 cos w1 þ A22 cos w2 þ B2 cos u;

v1ð0Þ ¼ vþ1 ¼ �a1A11 sin w1 � a2A12 sin w2 � gB1 sin u;

v2ð0Þ ¼ vþ2 ¼ �a1A21 sin w1 � a2A22 sin w2 � gB2 sin u:

ð19Þ
Using these equations, the terms A11cosW1,A12cosW2,A21cosW1 and so on, can be presented as functions of the dis-
placement xþ2 , velocities vþ1 , vþ2 and phase shifting u at the instant s = 0. For s = 2pn/g (subsequent impact), we
have
x1
2pn
g

� �
¼ �d;

v1
2pn
g

� �
¼ � 1

kr

vþ1 ;

x2
2pn
g

� �
¼ xþ2 ;

v2
2pn
g

� �
¼ vþ2 :

ð20Þ
In the next step, we have to substitute solutions (5) into (20) and then, to replace terms like
A11cosW1,A12cosW2,A21cosW1. . . with the functions of xþ2 , vþ1 , vþ2 and u. After this, we introduce the increments
D1x2,D2x2, D1v1,D2v1, D1v2,D2v2,D1u and D2u, according to Fig. 3.

Then

• assuming that the equations
sin D1u ¼ D1u; sin D2u ¼ D2u; cos D1u ¼ 1; cos D2u ¼ 1;

sin
k
g

D2u� D1uð Þ ¼ k
g

D2u� D1uð Þ; cos
k
g

D2u� D1uð Þ ¼ 1;
are fulfilled as the increments D are small,
• reducing the terms that do not include the increments and that satisfy Eq. (20) and
• neglecting the terms that include products of the increments as negligibly small,

we obtain a system of four linear equations with the unknowns D1v1,D2v1, D1v2,D2v2, D1u,D2u,D1x2 and D2x2
½C�fD2g ¼ ½D�fD1g; where fD2g ¼

D2v1

D2v2

D2x1

D2u

8>>><
>>>:

9>>>=
>>>;

and fD1g ¼

D1v1

D1v2

D1x1

D1u

8>>><
>>>:

9>>>=
>>>;
: ð21Þ
Next, using the substitution
fD2g ¼ b½I �fD1g; ð22Þ
Eq. (21) take the form
f½C�1�½D� � b½I �gfD1g ¼ 0: ð23Þ
The characteristic equation of matrix (Eq. (23)) is an equation of the fourth degree
b4 þ r3b
3 þ r2b

2 þ r1bþ r0 ¼ 0: ð24Þ
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The use of the following substitution
b ¼ wþ 1

w� 1
ð25Þ
leads to a new form of the characteristic equation
w4 þ s3w3 þ s2w2 þ s1wþ s0 ¼ 0: ð26Þ
Then, the condition jbj < 1, which guarantees the diminishing of the increments D, changes into the condition
Re(w) < 0, which can be easily investigated by means of the Hurwitz stability criterion.
5. Model of the cantilever beam with two masses

The numerical calculations, whose results are presented here, deal with a unique case of the 2-DOF system: it con-
sists of a light cantilever beam, on which two concentrated masses are mounted (Fig. 4a). It can be found easily that the
stiffness matrix of this beam has the following from
K11 K12

K21 K22

� �
¼ 1

W
12EIl3

2 �6EIl2
2ð3l1 � l2Þ

�6EIl2
2ð3l1 � l2Þ 12EIl3

1

" #
; ð27Þ
where
W ¼ 4l3l3
2 � l4

2ð3l1 � l2Þ2:
The equations of motion take the form
m1 0

0 m2

� � �€x1

�€x2

� �
þ

K11 K12

K21 K22

� �
�x1

�x2

� �
¼

F x2

0

� �
cosðxt þ uÞ: ð28Þ
An oscillator that consists of a light cantilever beam of the parameters l (l = l1),EI, and a concentrated mass
m = m1 + m2 mounted at the beam end is the 1-DOF reference system. The coefficient of stiffness of such an oscillator
is K = 3EI/l3, of course. Referring the masses m1 and m2 to the mass m, and the coefficients Kij to K, we obtain dimen-
sionless equations of motion in the form
Fig. 4. Cantilever beam with impacts and external excitation: (a) dimensional form; and (b) dimensionless form.
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l1 0

0 l2

� �
€x1

€x2

� �
þ

111 112

121 122

� �
x1

x2

� �
¼

g2

0

� �
cosðgsþ uÞ: ð29Þ
with
111 ¼
4n3

4n3 � n6ð3� nÞ2
;

112 ¼ �
2n2ð3� nÞ

12n3 � 3n6ð3� nÞ2
;

122 ¼
4

4n3 � n6ð3� nÞ2
;

n ¼ l2=l:
It is important to note that the dimensionless stiffness coefficients of the cantilever beam are functions of one parameter
n only. Thus in the stiffness matrix, we have one independent parameter n instead of three (r1,r2,r12), as it happens in
the general case. The relation between r1,r2,r12 and n is as follows
r1 ¼ 111 þ 112;

r2 ¼ 122 þ 112;

r12 ¼ �112:

ð30Þ
6. Motion of the 1-DOF system

Fig. 5 refers to a cantilever beam with only one concentrated mass mounted at the end, that is to say, to the system
depicted in Fig. 4b, with the following parameters: l1 = 1, l2 = 0. In Fig. 5a it has been shown how the character of the
system motion depends on values of the parameters g and d. If the point (g,d) lies within one of the regions denoted by
numbers n = 1,2,3, . . ., then the motion of the system will be periodic, with a period 1,2,3 . . . times longer than the per-
iod of the excitation force. If the point (g,d) lies beyond the regions of periodic motion, then the system will be char-
acterized by chaotic, quasi-chaotic or periodic motion that does not fulfill the assumption of identity of all impacts (cf.
the description of the Peterka’s method). The line denoted by B1 shows amplitude of forced vibrations (see Eq. (8)). If a
value of the parameter d is higher than B1, then besides periodic motion with impacts, periodic motion without impacts
is also possible, which means that we have a coexistence of attractors, and the kind of motion (with impacts or without)
depends of course on the initial conditions. In Fig. 5b an example of periodic motion with impacts for the system whose
parameters are d = 0 and g = 4 (denoted by point A in Fig. 5a) is shown. The time unit on the horizontal axis is the
Fig. 5. Periodic solutions for the 1-DOF system: (a) regions of existence; and (b) example of time series, d = 0, g = 4.0.
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period of excitation force T = 2p/g; number N stands for the number of such periods. As can be seen, according to
Fig. 5a, it is periodic motion with period 2 (n = 2). As each impact initiates free vibrations, the total displacement
of the system is a sum of forced vibrations with the frequency g and free vibrations with the frequency a1. It is worth
noticing that the regions of periodic motion for the values of d close to zero are located in the neighborhood of the
frequencies g equal to even multiples of the eigenvalue a1 = 1.
7. Motion of the 2-DOF system

Fig. 6a presents regions of periodic motion for the 2-DOF cantilever beam (Fig. 4b) with the parameters
n = 0.5,l1 = 0.9,l2 = 0.1. As the mass l2 is low compared to l1, it can be noticed that the regions of periodic motion
of the 2-DOF system have a shape of the respective regions for the 1-DOF system, from which certain fragments have
been deleted (cf. Fig. 5a). The reason why the regions of periodic motion for the 2-DOF system are smaller is of course
the fact that each impact generates free vibrations which are a superposition of vibrations with the frequencies a1 and
a2. The total displacement of the system (in the time intervals between impacts) is thus a superposition of not two but
three harmonic motions and the range of parameters d and g, for which their mutual synchronization is possible, is
lower than for the 1-DOF system. In Fig. 6b an example of periodic motion with impacts for the system of parameters
d = 0 and g = 4.2 = 4.0 · a1 (denoted by point A in Fig. 6a) is shown. Apart from the displacement x1, the displacement
x2 of the additional mass is presented as well. As can be seen, the time history of the displacement x1 of the mass that
impacts against the basis is similar to the time history of the displacement in Fig. 5b – only a difference in amplitudes is
visible. In the displacement x2 shown in Fig. 6b, one can see how large the part of free vibrations with the frequency a2

is.
Fig. 7 depicts the regions in which periodic motion with impacts exists for the 2-DOF system defined by the param-

eters l1 = 0.5,l2 = 0.5 (both masses are identical) and n = 0.348 (Fig. 7a) or n = 0.305 (Fig. 7b). In Fig. 7a wide regions
of periodic motion can be observed, especially for low values of d < 2 (for the value of parameter n = 0.348, the ratio of
eigenfrequencies of the system is a2/a1 = 8.0). Contrary, in Fig. 7b drawn for the system with n = 0.305 (a2/a1 = 9), the
regions of periodic motion are substantially smaller. It seems clear that the relations between the values a2,a1 and g
exert a strong influence on the periodicity of the 2-DOF system motion.
8. Eigenfrequencies

In the light of the fact that dimensionless coefficients of stiffness of the beam are functions of one parameter only,
whereas both dimensionless masses are related by the relationship l1 + l2 = 1, the eigenfrequencies a1 and a2 of the
Fig. 6. Periodic solutions for the 2-DOF system: (a) regions of existence, l1 = 0.9,l2 = 0.1, n = 0.5; and (b) example of time series,
d = 0, g = 4.2.



Fig. 7. Regions of the periodic solution for the 2-DOF system, l1 = l2 = 0.5: (a) n = 0.348; and (b) n = 0.305.
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system in Fig. 4 can be presented as functions of two parameters: n and l = l1/(l1 + l2). Fig. 8a shows a dependence
between values of the parameters (l,n) and a value of the ratio of eigenfrequencies k = a2/a1. Points with the coordi-
nates (l,n) lying on the borders between light and dark regions correspond to the systems for which the ratio of eigen-
frequencies k = a2/a1 is a natural number. For instance, for point U (l = 0.5,n = 0.605), the value of k = 7.0. The last
border between the light and dark region was calculated for k = 19. For higher values of k, calculations were not
conducted.
9. Relation of the frequency ratio – periodicity

In Fig. 8b, regions of periodic motion with impacts for the system defined by the parameters l = 0.5 (both masses
are identical) and d = 0.0 are depicted. The frequency of excitation force g (horizontal axis) and the parameter n that
defines the position of the additional mass are on the coordinate axes.
Fig. 8. Relation between eigenfrequencies and periodicity of motion: (a) frequency ratio k; and (b) regions of stable solutions for d = 0,
l = 0.5.
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The dependence of the position of periodic motion regions on the relation between the frequency value g and the
value of the fundamental eigenvalue a1 can be seen clearly. For low values of the parameter n, the additional mass
is close to the fixed end of the beam and its vibrations hardly affect the motion of the second mass. The behavior of
the system resembles the behavior of the 1-DOF system with the mass l1 = 0.5. The eigenfrequency of this system is
a1 = 1.41 and (as can be seen) regions of periodic motion for low values of the parameter n are in the vicinities of values
of g equal to its multiples: 2.82,5.64,8.46, etc. For high (close to 1) values of the parameter n, the additional mass is
close to the free end of the beam and its vibrations are nearly the same as the vibrations of the mass fixed to this beam
end. The system behaves almost as the 1-DOF system with the mass l1 = 1.0 and l2 = 0.0. The eigenfrequency of this
system is a1 = 1.0 and (as can be seen) regions of periodic motion for high values of the parameter n are in the vicinities
of values of g equal to its multiples: 2,4,6, etc.

The dependence of the position of regions of periodic motion and the frequency value g, as well as the ratios of eigen-
values k are visible as well: when the value of k is close to an odd number, then gaps occur in regions of periodic motion;
for systems in which k is close to an even natural number, wide ranges of the values of g in which the system motion is
periodic can be seen. The position of ranges of periodic motion for k = 8 and 9 can be compared to Fig. 7 for d = 0.0.
10. Origins of periodicity

Fig. 9a shows regions of the parameters g and n for which there exists a periodic solution (n = 2) that fulfils the con-
dition that the mass m1 cannot penetrate the basis (Eq. (18)). The solution can be stable or not. Fig. 9b is an enlarged
fragment of Fig. 8b and it presents regions of the parameters g and n for which a periodic solution satisfies the stability
condition additionally. One can easily observe that only for a small region of the parameters g and n, the cause why a
periodic solution does not exist is the condition that the basis is not penetrated. It occurs, for instance, for points D1 and
D2 (n = 0.69, g = 4.95 and g = 0.51, correspondingly). In principle, the solution stability decides about differences in the
extent of the regions denoted in Fig. 9a and b. That is to say, for point R (g = 6.0,n = 0.348,k = 8), a periodic solution
with period 2 exists, does not penetrate the basis and is stable – the system this point corresponds to operates within a
wide region of periodic motion. The system to which point S (g = 5.63,n = 0.305,k = 9) corresponds is characterized by
periodic motion with period 2, however even a slight (often unintended) alternation in the frequency of excitation force
introduces the system into the white field where the periodic motion is unstable; the system motion is quasi-periodic or
chaotic here. Exemplary Poincare maps are depicted in Fig. 10. The map shown in Fig. 10a is drawn for the system with
quasi-periodic motion, to which point Q1 in Fig. 9b (g = 5.9,n = 0.305), situated close to point S, corresponds. A fur-
ther increase in the frequency of excitation force introduces the system into the chaotic motion region: in Fig. 10b (point
Q2,g = 5.95,n = 0.305), a chaotic attractor can be seen (20000 points have been presented).

While analyzing the results obtained with the Peterka’s method, the authors’ attention was drawn to narrow regions
of non-periodic motion going across the centers of periodic motion regions, which can be seen in Fig. 7a (e.g., for
g = 5.6 in case of n = 2). In Fig. 9 this region separates points P1 and P2 and, as can be seen, the cause of its existence
Fig. 9. Regions in which: (a) the solution does not penetrate the basis; and (b) the solution is stable, d = 0, l = 0.5, n = 2.



Fig. 10. Poincare maps for d = 0, l = 0.5, n = 0.305: (a) g = 5.9; and (b) g = 5.95.
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lies in the fact that the condition of non-penetration of the basis is not satisfied. In Fig. 11 time histories of the solutions
that correspond to these points: P1 (g = 5.5,n = 0.3485) and P2 (g = 5.7,n = 0.3485) are drawn. As one can notice, the
time histories of the displacement of the mass l1 are very similar in both figures, whereas the time histories of the dis-
placement of the mass l2 differ much: at the impact instant, this mass moves either in phase with l1, or in antiphase.
11. Comparison of the methods

During the calculations, whose results are presented in this paper, two qualitatively different methods for motion
analysis of the vibrating 2-DOF system were applied. To compare the results obtained with these two methods,
Fig. 12 has been drawn. Fig. 12a presents a part of Fig. 8a, in the range �2 < d < 2. In Fig. 12b a bifurcation diagram
for the system Fig. 12a corresponds to has been shown, assuming that d = 0.0. The vertical lines that for d = 0.0 denote
these values of the frequency g (determined with the Peterka’s method) for which the periodic motion transforms into
the non-periodic one and vice versa, go also across the borders of ranges of the periodic and non-periodic motion on the
bifurcation diagram obtained by means of integration of motion equations with the Runge–Kutta method. This dia-
gram is shown as a confirmation of correctness and suitability of both the methods applied.
Fig. 11. Time series for d = 0, l = 0.5, n = 0.3485: (a) g = 5.5; and (b) g = 5.7.



Fig. 12. Comparison of the methods: (a) regions of the stable solution, l = 0.5, n = 0.348; and (b) the bifurcation diagram, l = 0.5,
n = 0.348, d = 0.
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12. Conclusions

The results of the conducted calculations allow for drawing the following conclusions:

1. Stable solutions that describe motion with impacts of the mechanical 2-DOF system exist in considerably wide
ranges of parameters describing this system.

2. The position and size of regions of periodic motion depend strongly on relations between the frequency of excitation
force g and the eigenvalues a1 and a2. To obtain stable and periodic motion with impacts, the system should be
designed in such a way that the frequency of excitation force g is an even multiple of the fundamental eigenvalue
a1, and the higher eigenvalue a2 is an even multiple of the excitation force frequency g.

3. The system exhibits adaptability, owing to which stable periodic solutions exist even if the above-mentioned condi-
tions are not strictly fulfilled, i.e., when g � 2n · a1 and a2 � 2ng.

4. The basic cause why the system motion is chaotic or quasi-chaotic is the instability of the existing periodic solution
to equations of motion.

5. The conducted calculations show a good agreement of the results obtained with two qualitatively different methods for
analysis of the system under investigation: the Peterka’s method and the numerical integration of equations of motion.
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