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We study the dynamics of a cantilever beam with an unnegligible large mass and with a
concentrated mass fixed at the end, which impacts on the base during motion. Generally
to model such a system, the finite element method with appropriate number of degrees
of freedom has to be employed. However, to analyse some selected aspects of its dynamic
behaviour, particularly to predict if the motion with impacts will be periodic, lower-dimen-
sional substitutive models with one degree or two degrees of freedom can be employed.
The way to determine the parameters of such models and their applicability limits are
discussed.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Mechanical systems whose elements impact on one another during operation have been extensively investigated by
many researchers. The reason for this interest lies in the fact that motions with impacts exist in a wide variety of engi-
neering applications, particularly in mechanisms and machines with clearances or gaps (e.g., see [1] and the references
therein). The physical process during impacts is discontinuous and strongly nonlinear, so the vibro-impact systems can
exhibit very rich and complicated dynamic behaviour, e.g., a Feigenbaum scenario (e.g., [2,3]), sudden changes in the
chaotic attractor and intermittent to chaos (e.g., [4,5]), Devil’s attractors (e.g., [3]), as well as different types of grazing
bifurcations (e.g., [6,7]).

The intensive development in investigations of nonlinear behaviours comprises more and more complex mechanical
systems with impacts and causes that new scientific teams join the group of researchers involved in dealing with these
issues. Vibrations of mechanical systems with impacts have been already discussed in our previous studies (e.g., [4,8–
13]). In particular, linear oscillators (e.g., [12]), or sets of linear oscillators (e.g., [8,10,11,13]), whose vibrating motion
is disturbed by impacts, have been analysed. These are impacts on a fixed base (e.g., [12]), or impacts of two oscillators
(dependent, e.g., [10,13] or independent, e.g., [8,11]) against each other. The investigations have been focused on finding
such sets of parameters that characterize the system (mass, stiffness coefficients of springs, coefficients of damping, fre-
quency of external forcing, etc.), for which the motion with impacts is periodic. The investigations are important from
the viewpoint of potential applications of vibrating systems with impacts, independently of the fact if motion periodicity
is a desirable phenomena or if we want to avoid this periodicity, expecting a chaotic or quasi-periodic motion of the
system to occur.
. All rights reserved.

x: +48 42 6365646.
k).

http://dx.doi.org/10.1016/j.cnsns.2009.10.003
mailto:tomaszka@p.lodz.pl
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


3074 B. Blazejczyk-Okolewska et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3073–3090
Stability of the periodic motion has also been investigated (e.g., [11,12]) to answer the following issues: does the dis-
turbed periodic motion return to its original form or does it transfer, for instance, into a motion without impacts? How large
are admissible impacts? An effect of inaccuracies in the system manufacturing on its motion periodicity is of great interest as
well: will slight, inevitable differences between the actual and assumed (in the physical model) values of parameters char-
acterizing the system result in the fact that the system will be found unexpectedly beyond the region of the periodic motion?
(see e.g., [11,12]).

In the investigations carried out so far [4,8,10–13] by means of the so-called numerical calculations, physical models with
a finite number of degrees of freedom, composed of rigid and heavy masses, connected by a massless spring, have been em-
ployed. The investigations have consisted in analysis of the system motion simulated by numerical integrations of the equa-
tions of motion. Time series, Poincare maps, bifurcation diagrams and maps of basins of attraction of various coexisting
attractors have been prepared for the analysis. It is widely known that such investigations are time consuming, particularly
due to a slow stabilization process of disturbed motion of the system, whose parameters are close to the boundary of the
periodic motion region.

To avoid these problems we have employed also the analytical method, developed by Peterka [14], for the one degree of
freedom system (an oscillator colliding with the unmovable base, e.g., [12]). The method has been generalised to a system
with two degrees of freedom [11]. In this method it is possible to find quickly whether there exists a periodic stable solution
to the equations of motion for the system under analysis, without numerical integration of these equations. Instead, a pos-
sibility of existence of an analytical form of the periodic solution with identical impacts is checked.

In this paper, the investigations so far limited to systems with a low number of degrees of freedom (two degrees at the
maximum) with massless springs have been extended to continuous elastic systems (that is to say, systems with consider-
able, unnegligible mass of elastic elements), that additionally have rigid concentrated masses. The investigations of such sys-
tems are related to an important problem of their discretization (discretization of their continuous elements, e.g., vibrating
beams, is necessary of course). It is well known that an analysis of continuous systems is limited to the analysis of steady
states, and systems themselves cannot have a very complex structure. A question then arises: how to develop discrete mod-
els of continuous systems with impacts – how many degrees of freedom should they have and how to define the size of the
rigid mass which impacts on the base, etc.?

Reduction in the number of degrees of freedom of the discrete system is also an important issue. One of the reasons is
obviously the time-consuming numerical integration of the equations of motion; another one – a possibility of application
of the Peterka’s method to define the position of regions of the periodic motion. The investigations conducted by the authors
so far [9] indicate that an extension of regions of the periodic motion identified with the Peterka’s method decreases sharply
with an increase in the number of degrees of freedom. This follows from the fact that each impact generates free vibrations of
the system, which are a superposition of all eigenmodes of vibrations. As subsequent eigenfrequencies are not their multi-
plicities in principle (the ratios of eigenvalues are not natural numbers), it is difficult to expect periodicity of such vibrations.
In practice, however, due to damping of vibrations in the time intervals between subsequent impacts, the periodicity of
vibrations related to, for instance, the two lowest eigenfrequencies only can have a considerable meaning. It seems then that
an application of the model with a limited number of degrees of freedom could provide the result closer to reality than an
application of the model with a significant number of degrees of freedom.

It is not possible to show a solution to the whole problem of discretization and answer all the above-mentioned questions
within the scope of one paper. We restrict thus to a presentation of results of the investigations that were conducted to find an
answer to the following question: what are the applicability limits of the model with one degree of freedom or two degrees of
freedom as a substitutive system for the system composed of a cantilever beam and a concentrated mass fixed at its end?

We consider the vibrations of the cantilever beam shown in Fig. 1. The beam has a length l, mass mb, inertial momentum of
the cross section I and is made of the material with the elasticity modulus E. One end of the beam is restrained and on the other
one the concentrated mass M is located. The mass M can impact on the base while vibrating. If the system is in the static equi-
librium position, the bottom part of the mass M (fender) is situated at a distance d from the base. A harmonic excitation force of
the amplitude eg2 proportional to the square power of its circumferential frequency g acts on the mass M (e.g., the same ampli-
tude–frequency relation takes place in the case of the force generated by the centrifugal force acting on the rotating rotor).

The investigations were conducted in two stages. In the first stage, for a model shown in Fig. 1 the finite element approx-
imation, hereafter referred to as the FEM model, and the approximations base on one degree of freedom or two degrees of
freedom discretizations (hereafter referred to as the 1DOF model or the 2DOF model), shown in Fig. 2(a–c), were developed.
In the second stage, various dynamic characteristics (for some selected parameters) determined for the FEM model were
Fig. 1. Considered cantilever beam.



Fig. 2. Equivalent models of the cantilever beam; FEM model (a), 1DOF model (b); 2DOF model (c).

B. Blazejczyk-Okolewska et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3073–3090 3075
compared to the respective characteristics for substitute systems, that is to say, for the 1DOF model and the 2DOF model. The
results of these comparisons allowed for drawing conclusions on a possibility of using substitute models with a low number
of degrees of freedom to model and analyse the motion of the heavy elastic beam with an additional concentrated mass
impacting of the base.
2. Discrete models

2.1. Finite elements method approximation

Fig. 2(a) depicts the discretization of our system generated with the finite element method. Some simple preliminary
numerical simulations were conducted to state whether an application of four finite elements to model vibrations of the can-
tilever beam was sufficient: the values of the first three resonance frequencies of such a model (without the concentrated
mass) numerically calculated comply with the analytical results with an accuracy up to three significant digits.

The matrix equation of the system motion in the time intervals between impacts can be written in the following form:
½M�f€xg þ ½T�f _xg þ ½K�fxg ¼ fFg sinðgtÞ: ð1Þ
The stiffness matrix [K] takes the form:
½K� ¼

k1
11 k1

12 k1
13 k1

14 0 0 0 0 0 0

k1
21 k1

22 k1
23 k1

24 0 0 0 0 0 0

k1
31 k1

32 k1
33 þ k2

11 k1
34 þ k2

12 k2
13 k2

14 0 0 0 0

k1
41 k1

42 k1
43 þ k2

21 k1
44 þ k2

22 k2
23 k2

24 0 0 0 0

0 0 k2
31 k2

32 k2
33 þ k3

11 k2
34 þ k3

12 k3
13 k3

14 0 0

0 0 k2
41 k2

42 k2
43 þ k3

21 k2
44 þ k3

22 k3
23 k3

24 0 0

0 0 0 0 k3
31 k3

32 k3
33 þ k4

11 k3
34 þ k4

12 k4
13 k4

14

0 0 0 0 k3
41 k3

42 k3
43 þ k4

21 k3
44 þ k4

22 k4
23 k4

24

0 0 0 0 0 0 k4
31 k4

32 k3
33 þ ksx k4

43

0 0 0 0 0 0 k4
41 k4

42 k4
43 k4

44 þ ksu

2
66666666666666666666664

3
77777777777777777777775

: ð2Þ
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Its components are stiffness matrices of individual finite elements:
½Ki� ¼

ki
11 ki

12 ki
13 ki

14

ki
21 ki

22 ki
23 ki

24

ki
31 ki

32 ki
33 ki

34

ki
41 ki

42 ki
43 ki

44

2
666664

3
777775 ¼

EI

l3
e

12 6le �12 6le

6le 4l2
e �6le 2l2

e

�12 �6le 12 �6le

6le 2l2
e �6le 4l2

e

2
6664

3
7775: ð3Þ
The support stiffness coefficients ksx and ksu, whose values are high enough to provide an effect of fixing the beam, are
additional elements. Moreover, the symbol E denotes the Young modulus, and the symbol I – a moment of inertia of the
beam cross-section.

The inertia matrix has the form:
½M� ¼

m1
11þM m1

12 m1
13 m1

14 0 0 0 0 0 0
m1

21 m1
22 m1

23 m1
24 0 0 0 0 0 0

m1
31 m1

32 m1
33þm2

11 m1
34þm2

12 m2
13 m2

14 0 0 0 0
m1

41 m1
42 m1

43þm2
21 m1

44þm2
22 m2

23 m2
24 0 0 0 0

0 0 m2
31 m2

32 m2
33þm3

11 m2
34þm3

12 m3
13 m3

14 0 0
0 0 m2

41 m2
42 m2

43þm3
21 m2

44þm3
22 m3

23 m3
24 0 0

0 0 0 0 m3
31 m3

32 m3
33þm4

11 m3
34þm4

12 m4
13 m4

14

0 0 0 0 m3
41 m3

42 m3
43þm4

21 m3
44þm4

22 m4
23 m4

24

0 0 0 0 0 0 m4
31 m4

32 m4
33þMS m4

43

0 0 0 0 0 0 m4
41 m4

42 m4
43 m4

44þBS

2
66666666666666666664

3
77777777777777777775

:

ð4Þ
This matrix consists of inertia matrices of individual finite elements of masses me and lengths le:
½Mi� ¼

mi
11 mi

12 mi
13 mi

14

mi
21 mi

22 mi
23 mi

24

mi
31 mi

32 mi
33 mi

34

mi
41 mi

42 mi
43 mi

44

2
6664

3
7775 ¼ mb

420

156 22le 54 �13le

22le 4l2
e 3le �3l2

e

54 13le 156 �22le

�13le �3l2
e �22le 4l2e

2
6664

3
7775: ð5Þ
The concentrated mass M and the disc of a heavy mass Ms and a high moment of inertia Bs that together with the coef-
ficients ksx and ksu yield an effect of fixing the beam, are additional elements.

One of the applied damping models of vibrating systems with many degrees of freedom is the model in which the damp-
ing matrix is a sum of two matrices (a detailed description of this model is to be found in, e.g., [15]):
½T� ¼ t½M� þ f½K�: ð6Þ
The first matrix, proportional to the inertia matrix, is a model of external damping (the coefficient of external damping
has been denoted by t), the second matrix being proportional to the stiffness matrix is a model of internal damping (the coef-
ficient of internal damping is referred to as f). In the investigations discussed here, damping was restricted to external damp-
ing, assuming that f ¼ 0:0.
Fig. 3. Eigenfrequencies of the FEM model: l ¼ 1:0, EI = 1/3.
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The structure of vectors of displacements and forces is as follows:
fxg ¼

x1

u1

x2

u2

x3

u3

x4

u4

x5

u5

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

; fFg ¼

eg2

0
0
0
0
0
0
0
0
0

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

: ð7Þ
An impact of the mass M on the base was modelled employing the well-known Newton’s law:
vþ1 ¼ �krv�1 ; ð8Þ
where v�1 denotes the velocity before impact and vþ1 stands for the velocity after impact; kr is the coefficient of restitution.
Impacts in the below described substitutive systems with one degree of freedom and two degrees of freedom were modelled
in the same way.

To integrate the equations of motion, the Runge–Kutta method was employed; the moments of impacts were established
using a method of successive approximations. The information on the dynamic behaviour of the system was provided by
time series, phase planes, Poincare maps and bifurcation diagrams made during the integration procedure.

2.1.1. DOF discretization
One of the proposed substitutive systems is a system composed of a massless cantilever beam with a concentrated mass

fixed at its free end (Fig. 2(b)). The equation of motion of the system in the time intervals between impacts is as follows:
m€xþ tm _xþ kx ¼ eg2 sinðgtÞ; k ¼ 3EI

l3 : ð9Þ
The mass m has a fender which can impact on the base during the system motion. If the system is in the static equilibrium
position, then the bottom part of the body with the mass m (fender) is situated at a distance d from the base.

2.1.2. DOF discretization
The next substitutive system, shown in Fig. 2(c), consists of a massless cantilever beam on which two concentrated

masses m1 and m2 are fixed. In this case, the body of the mass m1 has a fender with which it can impact on the base during
the system motion. Similarly as in the 1DOF model, when the system is in the static equilibrium position, then the bottom
part of the body with the mass m1 (fender) is situated at a distance d from the base.

In the time intervals between impacts, the motion of this system is described with the following equations:
m1 0
0 m2

� �
€x1

€x2

� �
þ #

m1 0
0 m2

� �
_x1

_x2

� �
þ

KB11 KB12

KB21 KB22

� �
x1

x2

� �
¼ eg2

0

( )
sinðgtÞ: ð10Þ
Fig. 4. Eigenfrequencies of the FEM model and the 2DOF model; m2 ¼ m2MAX ¼ 1:0 (a); m2 ¼ m2MAX ¼ 0:8 (b).
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The stiffness matrix takes the form:
Fig. 5.
m2 ¼ 0
KB11 KB12

KB21 KB22

� �
¼ 1

W
12EIl32 �6EIl2

2ð3l� l2Þ
�6EIl2

2ð3l� l2Þ 12EIl3

" #
; ð11Þ
where
W ¼ 4l3l3
2 � l4

2ð3l� l2Þ2: ð12Þ
The excitation of vibrations in the systems with one degree of freedom and two degrees of freedom takes place analo-
gously as in the system modelled with the finite element method.

It should be mentioned here that our aim has been to derive the 1DOF and 2DOF models which exhibit dynamical behav-
iour similar to the this of the higher-dimensional reference system (1) so discretization contains parameters which are ad-
justed to fit the natural frequencies obtained from the FEM model. Alternatively the low-dimensional models can be
obtained based on energy principles assuming low number of finite elements [17].
Bifurcation diagrams for a2=a1 ¼ 18:0; t ¼ 0:24; FEM model: M ¼ 0:79;mb ¼ 0:21 (a); 1DOF model: m ¼ 0:84 (b); 2DOF model: m1 ¼ 0:833;
:167; l2 ¼ 0:338 (c).
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2.2. Eigenfrequencies

The first model investigated was the FEM model with the following parameters: beam length l ¼ 1:0, beam rigidity EI = 1/
3, total mass of the beam and the concentrated mass mb þM ¼ 1:0. The numerical experiments started with calculations of
its first two eigenfrequencies a1 and a2. Fig. 3 shows how the values of a1 and a2 alter with a change in the beam mass mb

(and, of course, with a change in the concentrated mass M ¼ 1�mb). For the value of mb ¼ 0 (a massless beam with the con-
centrated mass M ¼ 1), the frequency a2 !1, whereas a1 ¼ 1. For mb ¼ 1 (a heavy beam without a concentrated mass at its
end), the eigenfrequencies equal to a1 ¼ 2:029 and a2 ¼ 12:731 were obtained, employing four finite elements. These values
agree with the values from the analytical formulas (commonly published, see, e.g., [16]), equal to a1 ¼ 2:0297 and
a2 ¼ 12:721 – differences arise only in the fourth significant digit. An application of a lower finite element number yields
the values a1 ¼ 2:029 and a2 ¼ 12:75 for three finite elements and a1 ¼ 2:034 and a2 ¼ 12:82 for two finite elements, respec-
tively. During the former investigations [9] it was stated that the ratio of eigenfrequencies a2=a1 exerted a considerable influ-
ence on the system motion periodicity: the ranges of the circumferential frequency of the excitation force for which the
system motion is periodic are wider when a value of the ratio a2=a1 is close to an even number than if a value of the ratio
a2=a1 is close to an odd number. Therefore, the values of a2=a are shown additionally in Fig. 3 as well.

Fig. 4(a and b) presents a comparison of the values of a1 and a2 for the FEM model with the values of a1 and a2 obtained
for the 2DOF model with the parameters: beam length l ¼ 1:0, beam rigidity EI = 1/3, total values of the concentrated masses
m1 þm2 ¼ 1:0. Apart from the value of masses m1 and m2, the parameter l2 (see Fig. 2b) is a decisive parameter as far as
values of eigenfrequencies are concerned. Fig. 4(a) shows the values of a1 and a2 for the 2DOF model (thin lines) calculated
for four different values of this parameter: l2 ¼ 0:2; l2 ¼ 0:3; l2 ¼ 0:4, and l2 ¼ 0:5, correspondingly. In Fig. 4(a) on the hori-
zontal axis, the value of the mass m2 alters from m2 ¼ 0:0 up to m2 ¼ 1:0. The values of eigenfrequencies for the FEM model
(thick lines) are presented as well. It can be easily seen that in the wide range 0 < m2 < 0:5, the values a1 of the 2DOF model
and the FEM model are almost identical; at l2 ¼ 0:3, the values a2 of the 2DOF model are close to a2 for the FEM model. Con-
siderable differences between the values of both a1 and a2 can be seen in the right-hand side of the figure. It follows from the
fact that m2 ! 1:0 means that m1 ! 0:0, and thus a return to the 1DOF model, that is to say, a2 !1, whereas for the FEM
model mb ! 1:0 means that a2 tends to the value a2 ¼ 12:731. Hence, the maximum value of the mass m2 has to be chosen.
This value is denoted by m2MAX, whereas the maximum value on the horizontal axis m2 ¼ m2MAX will correspond to the max-
imum value mb ¼ 1:0 for the FEM model. During further experiments, it was decided that the optimal value was m2MAX ¼ 0:8.

Fig. 4(b) shows once again the values a1 and a2 for the FEM model in the range from mb ¼ 0 up to mb ¼ 1 and the values a1

and a2 for the 2DOF model in the range from m2 ¼ 0 to m2MAX ¼ 0:8; the parameter defining the position of the mass m2 was
Fig. 6. Bifurcation diagrams for a2=a1 ¼ 18:0; t ¼ 0:08; FEM model: M ¼ 0:79;mb ¼ 0:21 (a); 2DOF model: m1 ¼ 0:833;m2 ¼ 0:167; l2 ¼ 0:338 (b).
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given two close values: l2 ¼ 0:338 and l2 ¼ 0:315. As results from the analysis of this figure, a slight change in l2 allows one to
obtain the values a1 and a2 for the 2DOF that comply with the FEM model.

3. Comparison of the dynamic behaviour of the FEM model and the substitutive 1DOF and 2DOF models

During further numerical investigations, the dynamic behaviour presented on bifurcation diagrams prepared for the FEM
models with selected values of the beam mass was compared with the dynamic behaviours obtained on bifurcation diagrams
made for the 1DOF model and the 2DOF model. The value of the mass m for the 1DOF model was calculated so that its eigen-
frequency a was equal to the fundamental eigenfrequency a1 of the FEM model. As 3EI = 1.0 and l ¼ 1:0, a simple relationship
is obtained:
Fig. 7.
(a); bifu
a2
1 ¼ a2 ¼ 3EI

ml3 ) m ¼ 1
a2

1

: ð13Þ
The parameters of the 2DOF model were selected in such a way that its both eigenfrequencies were equal to the corre-
sponding eigenfrequencies of the FEM model, and the total mass m1 þm2 was equal to the mass mb þM. To fulfil these con-
ditions, suitable values of the parameters m2 and l2 that defined the size and position of the mass m2 were assumed – see
Fig. 4(b).

The investigations started with a system in which 79% of the mass was the concentrated mass at the beam end. It was
forecast that in such a case it would be easier to select substitutive systems with similar dynamic behaviours (in particular,
the characteristics of the bifurcation diagram that allows for investigations of the system dynamics in a wide range of the
control parameter). Fig. 4(b) provides the information that for the FEM model with the concentrated mass at the beam
end M ¼ 0:79 and the beam mass mb ¼ 0:21, the eigenfrequencies are equal to a1 ¼ 1:092 and a2 ¼ 19:72, and the ratio
of frequencies a2=a1 ¼ 18:0. The damping coefficient t ¼ 0:24 (which corresponds to the value of the logarithmic decrement
D ¼ lnð2Þ for the system with 1DOF) has been assumed. Such a high value of the damping coefficient was chosen to minimize
an effect of vibrations with the frequency a2 on the periodicity of motion with impacts.

Fig. 5(a) shows a bifurcation diagram made for the above-described FEM model. The value e ¼ 1:0 was assumed, i.e.,
vibrations were excited with the harmonic force FðtÞ ¼ g2 sinðgtÞ, whose circumferential frequency varied from g ¼ 3:0 to
Comparison of the methods for the 2DOF model for m1 ¼ 0:833;m2 ¼ 0:167;a2=a1 ¼ 18:0; t ¼ 0:0; regions of stable solutions of the Peterka’s map
rcation diagram obtained by means of an integration of motion equations with the Runge–Kutta method: l2 ¼ 0:338 (b).
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g ¼ 10:0. The graduation on the vertical axis of the plot represents a value of displacement of the concentrated mass x1 at the
time instants defined by the equation sinðgsÞ ¼ 1:0. Impacts on the fixed base took place during motion; the coefficient of
restitution kr ¼ 0:6 and the distance d ¼ 0:0 were assumed. The diagram shows how the character of the system motion de-
pends on the frequency value of the excitation force g. Three distinct regions of periodic vibrations can be observed: with
period 2 ð3:6 < g < 5:1Þ, with period 3 ð5:8 < g < 7:2Þ, and with period 4 ð8:0 < g < 9:5Þ. For the remaining values of g,
we can observe nonperiodic vibrations: quasi-periodic or chaotic.

The displacements x of the substitutive mass of the value m ¼ 0:839 and the frequency a ¼ 1:092 for the 1DOF model
have been presented on the vertical axis of the bifurcation diagram denoted as Fig. 5(b). The value of the damping coefficient
t, the way of excitation of vibrations and the parameters kr and d were assumed identical as for the FEM model.

It follows from Fig. 4(b) that the substitutive 2DOF model has eigenfrequencies a1 ¼ 1:092 and a2 ¼ 19:72 if
m1 ¼ 0:833;m2 ¼ 0:167 and l2 ¼ 0:338. Fig. 5(c) presents a bifurcation diagram made for this model, when the way of exci-
tation of vibrations and the parameters t; kr and d are assumed identical as for the FEM model. The graduation on the vertical
axis of the diagram denotes displacements x1 of the concentrated masses m1.

A comparison of the bifurcation diagrams for the FEM model and the respective 1DOF model and the 2DOF model shows a
very good compatibility of both the ranges of periodic and nonperiodic motion, as well as amplitudes of vibrations – which,
Fig. 8. Bifurcation diagrams for a2=a1 ¼ 8:0; t ¼ 0:33; FEM model: M ¼ 0:293;mb ¼ 0:707 (a); 1DOF model: m ¼ 0:461 (b); 2DOF model:
m1 ¼ 0:452;m2 ¼ 0:548; l2 ¼ 0:315 (c).
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as has been mentioned, has been expected for models with a heavy concentrated mass at the beam end. On the bifurcation
diagrams (Fig. 5(a) and (c)), the values of displacement x1 decrease in the vicinity of the excitation frequency
g ¼ 4:37;g ¼ 6:55 and g ¼ 8:74. This phenomenon is caused by an increase in the amplitude of free vibrations of the fre-
quency a2, generated by impacts. A more detailed explanation of this issue is to be found later in this paper.

A decrease in the value of the damping coefficient from t ¼ 0:24 to t ¼ 0:08 for vibrations of the frequency a1 is not fol-
lowed by differences arising between the bifurcations diagrams made for the FEM model (Fig. 6(a)) and the 2DOF model
(Fig. 6(b)): one cannot see any differences in the position of ranges of the periodic motion and the amplitudes of periodic
vibrations.

Fig. 7(a) depicts a plot drawn by means of the Peterka’s method (a detailed description of the method is to be found, for
instance, in [9] or [14]) of the undamped ðt ¼ 0:0Þ 2DOF model with the masses m1 ¼ 0:833 and m2 ¼ 0:167. The frequency g
and the length l2 are parameters on the horizontal and vertical axis, respectively. One can see the regions of g and l2, marked
in the gray scale, in which the motion of the system under analysis is periodic with period 2, 3 and 4, on this plot. Moreover, a
dependence of the motion periodicity, described in [9], on the value of the ratio a2=a1, which in turn depends on the value of
l2, can be seen as well. Fig. 7(b) shows displacements of the mass m1 of the 2DOF model drawn on the basis of the numerical
integration of the equations of motion with the Runge–Kutta method for the selected length l2 ¼ 0:338. A comparison of both
the plots proves that the ranges of frequency g in which the motion is periodic, identified with both the methods, are the
same. This fact confirms the applicability and meaning of the Peterka’s method as a method which allows one to find quickly
a dependence between the motion parameters of the system with impacts and its motion periodicity. A comparison of
Fig. 5(c) ðt ¼ 0:24Þ, Fig. 6(b) ðt ¼ 0:08Þ and Fig. 7(b) ðt ¼ 0:0Þ shows that damping increases the ranges of frequency g, in
which the motion is periodic, and thus the Peterka’s method is more restrictive and – hence – safer. At low damping, a de-
crease in the displacement x1 in the vicinity of g ¼ 6:55 and g ¼ 8:74 (due to the domination of vibrations with the frequency
a2Þ results in additional impacts on the base and a nonperiodic motion – one can see blurred columns of points instead of
two or three points on the bifurcation diagram (see Fig. 7(b)).
4. Influence of the beam mass

The subsequent experiments were devoted to systems with a heavier and heavier beam mass. An increase in the beam
mass is followed by a decrease in the value of ratio a2=a1. During the analysis of bifurcation diagrams with a deceasing value
of a2=a1, significant differences (that is to say, differences in the values of amplitudes) between the diagram for the FEM
Fig. 9. Bifurcation diagrams for a2=a1 ¼ 8:0; t ¼ 0:11; FEM model: M ¼ 0:293;mb ¼ 0:707 (a); 2DOF model: m1 ¼ 0:452;m2 ¼ 0:548; l2 ¼ 0:315 (b).
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model and the corresponding diagrams for the substitutive systems were noticed no sooner than for the system of
a2=a1 ¼ 8:0 and t ¼ 0:33 (the value t ¼ 0:33 corresponds to the logarithmic decrement of damping D ¼ lnð2ÞÞ, with the fol-
lowing parameters: M ¼ 0:293;mb ¼ 0:707 for the FEM model (see Fig. 8(a)), m ¼ 0:461 for the 1DOF model (see Fig. 8(b)),
and m1 ¼ 0:548;m2 ¼ 0:452; l2 ¼ 0:318 for the 2DOF model (see Fig. 8(c)). It is worth noticing that a comparison of the bifur-
cation diagrams shown in Fig. 8(a–c), despite the above-described amplitude divergence, still shows a good coexistence of
both the ranges of periodic and nonperiodic motion. It should be added that there is also conformity of values of vibration
amplitudes for the 1DOF model (Fig. 8(b)) and the 2DOF model (Fig. 8(c)). It was checked that there were also such confor-
mities for the frequency g values higher than the value of the second eigenmode. In the vicinity of the frequency g � 5:9, for
Fig. 10. Time series of the FEM model for M ¼ 0:293;mb ¼ 0:707;a2=a1 ¼ 8:0; t ¼ 0:11; g ¼ 5:6 (a); g ¼ 5:86 (b); g ¼ 5:93 (c); g ¼ 5:53 (d).

Fig. 11. Details of the time series of the FEM model for M ¼ 0:293;mb ¼ 0:707;a2=a1 ¼ 8:0; t ¼ 0:11;g ¼ 5:86.
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which the time interval between impacts equal to a doubled period of the forced vibrations 2Tg is equal to the free vibration
period Ta2, distinct differences in the value of amplitude and phase (a phase shifting) were observed between the FEM model
and the 2DOF model (the same behaviours but for different values of the system parameters and the value g can also be ob-
served in Fig. 5(a–c)). Here we can see a transition through superharmonic resonances. A similar phenomenon can be ob-
served at g ¼ 8:83, for which the time interval between impacts is equal to 3Tg ¼ 4Ta2. On the other hand, a local
decrease of x1 in the neighbourhood of the frequency g ¼ 5:53 is caused by free vibrations with the frequency a3. It was cal-
culated that for the investigated FEM model of a2=a1 ¼ 8:0, the frequency a3 ¼ 35:92. It means that for the g ¼ 5:53, the
equality 2Tg ¼ 13Ta3 holds. A different behaviour of both the systems is caused by various mass distributions: the concen-
trated mass M ¼ 0:293 is lighter than the mass m1 ¼ 0:452; the beam mass mb ¼ 0:707 is heavier than the mass m2 ¼ 0:548.
Moreover, the mass m2 is fixed at one third of the beam length, whereas the beam mass centre in the FEM model lies (obvi-
ously) at its half-length. A detailed analysis of the way these phenomena originate is presented in the further part of this
paper for systems with lower damping.

5. Influence of damping

As has been mentioned above, slight damping can limit the applicability of models with a low number of degrees of free-
dom in predicting the periodicity of motion of continuous systems: for the FEM model with the ratio a2=a1 ¼ 8:0 and the
frequency g ¼ 6:64, a system chaotic motion appears as a result of a decrease in damping from t ¼ 0:33 to t ¼ 0:11 (damp-
ing t ¼ 0:11 corresponds to D ¼ lnð1:25ÞÞ. Fig. 9(a) shows a bifurcation diagram made for this model of the following param-
eters: M ¼ 0:293;mb ¼ 0:707;a1 ¼ 1:473;a2 ¼ 11:77; t ¼ 0:11. A decrease in damping has caused that only narrow windows
of a periodic motion can be seen in Fig. 9(a), if compared to Fig. 8(a). Fig. 9(b) presents a bifurcation diagram for the respec-
tive 2DOF model of the parameters as follows: m1 ¼ 0:452;m2 ¼ 0:548; l2 ¼ 0:315; t ¼ 0:11 and, as one can see, a decrease in
damping results only in a slight narrowing of ranges of a periodic motion. Moreover, in the vicinity of g ¼ 5:9 and g ¼ 8:83,
additional impacts (see Fig. 8(c)) that are followed by a loss of motion periodicity can be observed for the FEM model.

Fig. 10 depicts time series for the FEM model of the parameters: M ¼ 0:293;mb ¼ 0:707;a2=a1 ¼ 8:0 and t ¼ 0:11 (the
parameters as on the bifurcation diagram in Fig. 9(a)), for four values of frequency: g ¼ 5:6;5:86;5:93 and 5:53. The dis-
placement x1 of the mass M (denoted by 1) and the displacements x2; x3 and x4 of the nodes connecting the finite elements
Fig. 12. Comparison of the methods for the 2DOF model for m1 ¼ 0:452;m2 ¼ 0:548;a2=a1 ¼ 8:0; t ¼ 0:0; bifurcation diagram obtained by means of an
integration of motion equations with the Runge–Kutta method: l2 ¼ 0:315 (a); regions of stable solutions of the Peterka’s map (b).
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versus time (denoted by 2, 3, 4) can be seen in the figure. The time is represented by the number N of periods of external
forcing, related to time by the relationship N ¼ gt=2p. It is easily seen that at the frequency g ¼ 5:6 (Fig. 10(a)), the first
eigenmode of vibrations and forced vibrations are the main components of the beam deflection line (and hence, of the dis-
placements of nodes depicted in the figure). A contribution of the second component – the second eigenmode of vibrations –
is almost invisible in the displacement x1, however, it can be easily observed in the displacement x4 of the node that is sit-
uated closest to the fixed beam end. The system performs the period 2 motion. Fig. 10(b) shows time series of vibrations for
g ¼ 5:86, at which 2Tg ¼ 4Ta2. For this value of g, a contribution of the second eigenmode of vibrations is predominant. The
details of the time series of displacements have been enlarged in Fig. 11. Just before impact, the whole beam displaces with
the concentrated mass towards the base (downwards), and moreover values of displacements of nodes are lower than the
displacement of the concentrated mass, which means that the beam is deflected towards the base. It has also been stated
(which can be seen in the figure as well) that the velocity of the concentrated mass before impact is lower than at
g ¼ 5:6. After bouncing from the base, the concentrated mass displaces upwards, whereas the beam, which has not impacted
on anything, displaces still downwards. If the beam is heavy enough in comparison to the concentrated mass (and this is the
case here: mb ¼ 0:707;M ¼ 0:293), then the beam draws the concentrated mass behind itself, causing thus an additional im-
pact. And this is the reason why the system motion becomes nonperiodic. Just after the resonance, at g ¼ 5:93 (Fig. 10(c)),
the beam is deflected upwards at the instant of impact – displacements of its nodes are higher than the displacement of the
concentrated mass – besides, node velocities are low. Such a configuration of the beam makes it possible for the concen-
trated mass to separate from the base after impact – additional impacts do not take place and the system performs the period
2 motion again. Summing up, in Fig. 10 we can see reasons of the periodicity loss of motion of the FEM model: additional
impacts appear when the second eigenmode of vibrations is predominant in the beam deflection line and the beam is heavy
enough if compared to the concentrated mass. In Fig. 9(b), showing a bifurcation diagram of the 2DOF model, we do not ob-
serve this periodicity loss due to a different mass distribution, which has already been mentioned in comments on Fig. 8. It
has also been mentioned there that the stability loss of motion of the FEM model may be caused by free vibrations of the
subsequent eigenfrequency a3, generated during impacts: at g ¼ 5:53, an equality 2Tg ¼ 13Ta3 holds. Fig. 10(d) depicts time
series of vibrations for this value of the excitation frequency. One can see that the third eigenmode of vibrations is predom-
inant and that it results in additional impacts – the system motion is nonperiodic. An increase in the excitation frequency up
to g ¼ 5:6 (Fig. 10(a)) causes that the contribution of the third mode decreases, which makes the motion periodic again.
Fig. 13. Time series of the 2DOF model for m1 ¼ 0:452;m2 ¼ 0:548; l2 ¼ 0:315;a2=a1 ¼ 8:0; t ¼ 0:0; g ¼ 5:86 (a); g ¼ 5:871 (b); g ¼ 5:874 (c); g ¼ 5:9 (d).
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A question arises then: can additional impacts be observed in the 2DOF model as well? In looking for an answer, the
damping in the 2DOF model was decreased to zero ðt ¼ 0:0Þ and Fig. 12 was drawn. On the bifurcation diagram in
Fig. 12(a), the regions of periodic motion that can be compared to the regions of periodic motion obtained with the Peterka’s
method (Fig. 12(b)) can be seen. We observe here a very good agreement of the results again. The most interesting, however,
is the fact that for the first time we can see the motion periodicity loss in the range 5:86 < g < 5:875, that is to say, in the
vicinity of the resonance 2Tg ¼ 4Ta2, where four periods of free vibrations with the second eigenmode occur in the time
interval between impacts. This phenomenon can be observed in the FEM model with a different mass distribution even at
strong damping. Fig. 13 shows a time series of vibrations for the 2DOF model for four values of frequencies:
g ¼ 5:86;5:871;5:874 and 5.9. First of all, let us draw attention to the fact that before the resonance (g ¼ 5:86, Fig. 13(a)),
the vibrations x1 and x2 of the masses m1 and m2 are in phase, whereas after the resonance (g ¼ 5:9, Fig. 13(d)) are in anti-
phase. At the frequency g ¼ 5:86, the mass m1 velocity after impact is so high that the mass m2, still displacing towards the
base, cannot draw m1 behind itself towards the base – as a result, an additional impact does not occur. An increase in the
excitation frequency changes the phase shifting between the displacements of both masses. Consequently, the mass m1

velocity decreases after impact and the mass m2 is able to change the direction of the mass m1 motion, leading to an addi-
tional impact (g ¼ 5:871, Fig. 13(b)), and – with a further increase in the excitation frequency – even to a series of impacts
Fig. 14. Bifurcation diagrams for a2=a1 ¼ 7:0 and D ¼ lnð2Þ for all models; FEM model: M ¼ 0:171;mb ¼ 0:829; t ¼ 0:36 (a); 1DOF model: m ¼ 0:37; t ¼
0:275 (b); 2DOF model: m1 ¼ 0:360;m2 ¼ 0:640; l2 ¼ 0:298; t ¼ 0:275 (c).
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occurring one after another, which in real systems can be interpreted an instantaneous continuous contact of the mass m1

with the base (Fig. 13(c)). A further change in the phase shifting restores the period 2 motion of the system.

6. System with a very heavy beam

Next, the FEM model of the following parameters: M ¼ 0:171;mb ¼ 0:829;a1 ¼ 1:646;a2 ¼ 11:52;a3 ¼ 34:12;
a2=a1 ¼ 7:0; t ¼ 0:36, whose bifurcation diagram is presented in Fig. 14(a), and the corresponding 1DOF model
ðm ¼ 0:369; t ¼ 0:275Þ and the 2DOF model ðm1 ¼ 0:36;m2 ¼ 0:64; l2 ¼ 0:298; t ¼ 0:275Þ, whose bifurcation diagrams are
in Figs. 14(b) and 14(c), respectively, were investigated. The present approach to the selection of parameters makes it pos-
sible for various 1DOF, 2DOF and FEM models to assume the parameter t in such a way that the velocity with which free
vibrations initiated by the boundary conditions proportional to the first eigenmode of vibrations vanish is the same (and
thus, the logarithmic decrement of damping D ¼ lnð2Þ for the appropriate set of models).

First of all, let us focus our attention on a considerable decrease in the regions of periodic motion in comparison to the
respective ranges marked in Figs. 5(a) and 8(a), drawn for the FEM models with the frequency ratio equal to a2=a1 ¼ 18 and
a2=a1 ¼ 8, and with the damping coefficient value t corresponding to the logarithmic decrement of damping D ¼ lnð2Þ for
vibrations with the frequency a1ðt ¼ 0:24 in Fig. 5(a) and t ¼ 0:33 in Fig. 8(a)). We guess that the reason are again free vibra-
tions of the frequencies a2 and a3, that will lead to additional impacts in a wider and wider range of the frequency g at a
decreasing concentrated mass M. Fig. 15 shows a time series of vibrations for the FEM model for four values of frequency
g ¼ 5:93;5:76;5:686 and 5.25. At g ¼ 5:93 (Fig. 15a), we can see the period 2 motion with one impact per period. Fig. 14(a)
indicates that the region g of periodic motion must be very narrow. A decrease in the excitation frequency up to g ¼ 5:76
(Fig. 15(b)), at which 2Tg ¼ Ta2, brings about an additional impact, whereas a further decrease in the excitation frequency
up to g ¼ 5:686 (Fig. 15(c)), for which 2Tg ¼ 12Ta3, results in two additional impacts. Similarly, after decreasing the excita-
tion frequency to g ¼ 5:25 (Fig. 15(d)), for which 2Tg ¼ 13Ta3, three additional impacts appear. As a consequence of these
additional impacts, the system motion is nonperiodic, that looks like the period 2 motion.

The next issue is a compatibility of the regions of periodic motion that are observed on the bifurcation diagrams
presented in Fig. 14(b) and (c) with the results obtained with the Peterka’s method. Fig. 16(a) shows the regions of periodic
Fig. 15. Time series of the FEM model for M ¼ 0:171;mb ¼ 0:829;a2=a1 ¼ 8:0; t ¼ 0:36;g ¼ 5:93 (a); g ¼ 5:76 (b); g ¼ 5:686 (c); g ¼ 5:25 (d).



Fig. 16. Comparison of the methods for the 2DOF model for m1 ¼ 0:360;m2 ¼ 0:640;a2=a1 ¼ 7:0; regions of the stable solutions of the Peterka’s map with
t ¼ 0:0 (a); bifurcation diagrams obtained by means of an integration of motion equations with the Runge–Kutta method: l2 ¼ 0:298 and t ¼ 0:01 (b) and
t ¼ 0:0 (c).
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motion determined with this method for the above-described 2DOF model, as a function of the frequency g and the length l2.
As has been mentioned in [9], the value of ratio a2=a1 ¼ 7, i.e., it is an odd number and it denotes very narrow regions of
periodic motion obtained with the Peterka’s method, which can be seen in Fig. 16(a) for l2 ¼ 0:298. They are much narrower
than the regions marked in Fig. 14(c), plotted on the assumption of strong damping t ¼ 0:275. When damping is decreased to
a low value of t ¼ 0:01, on the bifurcation diagram (Fig. 16(b)) one can see new regions of nonperiodic motion caused by
additional impacts, but still the regions of periodic motion are much wider than it follows from the calculations conducted
with the Peterka’s method. A conclusion can be drawn that even slight damping (that always exists in real systems) de-
creases the amplitude of free vibrations with the frequency a2 to such an extent that these vibrations do not give rise to addi-
tional impacts of the mass m1 on the base and the effect of decreasing the regions of periodic motion caused by the ratio of
eigenfrequencies close to an odd number is not observed. When damping is decreased to t ¼ 0:0 (Fig. 16(c)), a compatibility
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of positions of regions of the period 1 motion (in the vicinity of g ¼ 4) and of the period 2 motion (in the vicinity of g ¼ 7:5) is
to be observed. No regions of periodic motion in the vicinity of g ¼ 3:3;g ¼ 5:8;g ¼ 6:7 and g ¼ 9:0 can be seen on the bifur-
cation diagram. The reason can lie in a high sensitivity of the motion to changes in the system parameters, e.g., for g ¼ 6:7, a
change in l2 from l2 ¼ 0:298 to l2 ¼ 0:295 causes that the calculations with the Peterka’s method indicate the nonperiodicity
of motion.
7. Conclusions

Substitutive systems with one degree of freedom, and especially with two degrees of freedom, can be employed in the
investigations of periodicity of motion with impacts of simple vibrating systems with a substantial mass of elastic elements.
We owe this possibility to the fact that forced vibrations and the first eigenmode of these vibrations are the dominant com-
ponent of the system geometrical configuration during the motion with impacts.

The higher the similarity (as regards amplitudes and positions of regions of periodic motions) of bifurcation diagrams of
the model based on the finite element method (FEM model) and simple models with one degree of freedom (1DOF model)
and with two degrees of freedom (2DOF model), the lower the mass of elastic elements. Then, all models maintain a similar
mass distribution. In the case of systems with heavy elastic elements, free vibrations of higher frequencies (an effect of vibra-
tions with the frequencies a2 and a3 has been investigated) result in additional impacts and, consequently, in a loss of motion
periodicity. In substitutive systems with massless elastic elements, free vibrations with higher frequencies have a lower con-
tribution in the deflection line (if they occur at all due to a limited number of degrees of freedom) because of a different mass
distribution. Hence, the regions of periodic motion can be wider in these systems. The less considerable the differences are,
the stronger the damping of vibrations is. Thus, the heavier the beam mass, the stronger the damping has to be to make the
motion of the FEM model and the corresponding 1DOF and 2DOF models periodic in the same ranges of the frequency g. On
the other hand, from the optimistic point of view, the above-described irregularities and differences occurred only for the
system in which the beam mass was equal to 70% of the total system mass.

It has been found that the basic condition the substitutive 1DOF model has to satisfy is maintaining the same fundamen-
tal eigenfrequency as the model based on the finite element method. The substitutive 2DOF model must have eigenfrequen-
cies equal to the first and second eigenmode of the FEM model, and besides it must keep its total mass (that is to say,
m1 þm2 ¼ mb þM). Numerical experiments with various substitutive 2DOF models, prepared according to other criteria,
have been conducted. For instance, the FEM model and the substitutive 2DOF model have to have the same values of the
eigenvalues a1 and a2 and the mass centre position. Let us notice that this newly formulated condition can replace only
the currently used one (and not to be parallel to it, i.e., the total mass of the 2DOF model can be, or even must be different
from the mass of the FEM model). These experiments have provided bifurcation diagrams that differ evidently from the dia-
grams for FEM models and have been concluded with the statement that the 2DOF model maintaining eigenfrequencies and
mass of the FEM model is the best (that is to say, the authors cannot develop any better one).

It was stated during the numerical experiments that if a periodic motion is desirable from the viewpoint of the applica-
tion of vibrating systems, then only a motion with one impact per period can be employed in the engineering practice. An
appearance of additional impacts results in a nonperiodic motion. It was also found that a periodic motion with two or three
impacts (that occur one after another) per one period of the system motion can occur in some ranges of the frequency of the
external excitation g. However, these intervals are so narrow (of the magnitude of 0.0001) that they can be neglected from
the practical point of view.

In theory, there is of course a possibility to generate additional impacts by free vibrations of even higher frequencies:
a4;a5, and so on. However, due to the self-evident reason (width of the range g), the search for such instances of the motion
periodicity loss has been found purposeless.
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