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The applicability of the soft and hard impact models in modeling of vibro-impact systems
is discussed in the paper. We derive the conditions which allow the same rate of energy
dissipation in dynamical systems which use both impact models. The advantages and dis-
advantages of both models in modeling are discussed. We show that in the case of the stiff
base both methods give the same results but the elastic base application of the hard impact
model leads to wrong results.
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1. Introduction

Recently, one observes the growing interest in the dynamics of impacting systems as there is a large number of
mechanical systems of practical interest in which the impacting motion occurs between elements. The fundamental nature
of the impacting motion, and the resulting dynamical phenomena become a matter of great interest. Extensive studies of
vibro-impact systems started in the second half of the XXth century with the works of Kobrynskii [1], Feigin [2], Fillippov
[3] and Peterka [4]. During recent years considerable interest in such systems has been seen, particularly applied to one
degree-of-freedom piece-wise linear systems excited by external periodic force. The investigations by Shaw and Holmes
[5], Nordmark [6], Blazejczyk et al. [7], Lenci and Rega [8], Hogan [9], Budd and Dux [10], Chin et al. [11] and DiBernardo
et al. [12] can serve as examples.

One of the problem of the modeling of the vibro-impact systems is the selection of the appropriate impact model. In the
simplest way one assumes infinitely small time of the bodies contact at the collision and constant value of the restitution
coefficient describing the energy dissipation. This model is based on the Newton’s law of impact and is called hard impact
model. In this model the rigid body collides with stiff base and both the colliding body and the base are not deformed at
the collision. The consideration of the finite nonzero contact time and a penetration of the base by the colliding body leads
to the soft impact model. In this model the impacting base (fender) is cushioned with a spring-damper support as it is com-
mon in engineering. A soft impact model allows the application of different types of spring dampers support, which can be
either linear or nonlinear. The application of soft impact models to various engineering application is discussed in the works
[13–16].
. All rights reserved.
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In this paper we discuss the applicability of soft and hard impact models in modeling of the vibro-impact systems. We
derive the conditions under which both methods are equivalent in the sense of the same rate of energy dissipation. The
advantages and disadvantages of both models are discussed. We show that in the case of the stiff base both methods give
the same results but for the elastic base the application of a hard impact model leads to wrong results.

This paper is organized as follows. In Section 2 we describe hard and soft impact models and derive the condition which
allows the same rate of energy dissipation in both models. Section 3 presents the main differences in the dynamical behavior
of the ball (material point) which collides with the parallel base when hard and soft impacts are considered. The influence of
the impact modeling on the dynamics of two degree-of-freedom system is discussed in Section 4. Finally, we summarize our
results in Section 5.

2. Impact models

Collision of the rigid body with mass m1 with the base can be modeled in two ways. The first one (hard impacts) assume
that: (i) both the colliding body and the base are stiff, (ii) the time of the collision (the time of the contact of two bodies) si is
equal to zero, (iii) there exists the following relation between the velocity of mass m1 before the collision (v�) and its velocity
after collision (v+)
vþ ¼ �krv�; ð1Þ

where kr is a restitution coefficient. Relation (1) is known as Newton’s law of impacts. At the hard impact the kinetic energy
is dissipated as follows:
Ek

E0
¼ vþ

v�

� �2

¼ k2
r ; ð2Þ
where E0 and Ek denote, respectively, kinetic energy before and after the collision.
The second way of modeling assumes that mass m1 collides with the base modeled as a light fender supported by a light

spring with the restitution coefficient ks and light viscous damper with the damping coefficient ts as shown in Fig. 1. Differ-
ently to the previous case of hard impacts in this case the time of the collision si is lager than zero and the colliding body can
penetrate the base as deeply as hi. These two differences can result in different dynamical behavior of the vibro-impact sys-
tems in which hard and soft impacts have been considered.

As we are considering two different models of impacts it is worth to estimate the relation between coefficients ks, ts and
restitution coefficient kr which allows the same energy dissipation. Assume that mass m1 is thrown from height H0. Its veloc-
ity at the moment of the collision is v�0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2gH0

p
, where g is the acceleration due to the gravity. The velocity after the col-

lision is given by Eq. (1) and as the energy is dissipated according to Eq. (2) the maximum height the mass m1 can reach after
the first collision is equal to H1 = (kr)2H0 and after the successive collisions respectively H2 = (kr)2H1, H3 = (kr)2H2,. . ..

To estimate the coefficients ks and tsin the same way, one has to consider that at the collision of mass m1 with the base a
new oscillatory system shown in Fig. 1 is created. Assuming that coefficient ks is large enough it is possible to neglect static
displacement of the spring xg = m1g/ks, so xst = 0.0 is the static equilibrium of this oscillator. Its dynamics is governed by the
following equation:
m1€xs þ ts _xs þ ksxs ¼ 0; ð3Þ
and in the dimensionless form
€xs þ 2hs _xs þ a2
s xs ¼ 0 ð4Þ
where
hs ¼
ts

2m1
; a2

s ¼
ks

m1
: ð5Þ
The solution of Eq. (4) is as follows:
xs ¼ e�hssðA sin kssþ B cos kssÞ
_xs ¼ �hse�hssðA sin kssþ B cos kssÞ þ kse�hssðA cos kss� B sin kssÞ;

ð6Þ
Fig. 1. Soft impact model as massless fender supported by damper and spring.
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where
ks ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

s � h2
s

q
ð7Þ
is the frequency of the damped oscillations. Assuming that the velocity of the colliding body at the collision is given by v0,
one gets the following initial conditions
s ¼ 0) xs ¼ 0; _xs ¼ v0; ð8Þ
so Eq. (6) take the form
xs ¼ e�hss v0

ks
sin kss

v s ¼ _xs ¼ �hse�hss v0

ks
sin kssþ kse�hss v0

ks
cos kss:

ð9Þ
At the beginning of mass m1 – fender contact and at its end after time si oscillator (3) is in the equilibrium state so the
contact takes place during the time equal to the half of the oscillation period
si ¼
1
2

Ti ¼
p
ks
: ð10Þ
Multiplying both sides of Eq. (3) by velocity vs one gets
m1v s _v s ¼ �ksxxvs � tsv2
s : ð11Þ
The expression
m1v s _v s ¼
d
dt

m1v2
s

2

� �
¼ dEk

dt
ð12Þ
represents the time derivative of the kinetic energy of mass m1. At the contact of duration 0.5Ti the energy dissipation is gi-
ven by
DEk ¼
Z 0:5Tz

0
dEk ¼

Z 0:5Ti

0
�ksxsvsdsþ

Z 0:5Ti

0
�tsv2

s ds ¼ DEk1 þ DEk2: ð13Þ
The first integral DEk1 which represents energy dissipation in the spring is equal to zero as at the beginning and at the end
of the contact the length of the spring is the same. This observation leads to the conclusion that in the lack of damping
(ts = 0), for any value of the stiffness coefficient ks soft collision is equivalent to the ideal elastic hard collision with restitution
coefficient kr = 1.0. Different values of ks give different collision times and different base penetration depth which allows the
modeling of the collisions between rigid and elastic bodies, for example collision of the stiff steel ball with elastic block of
elastomer.

Substituting Eq. (9) into the second integral of Eq. (13) one gets
DEk2 ¼
Z p=ks

0
�ts �hse�hss v0

ks
sin kssþ kse�hss v0

ks
cos kss

� �2

ds ¼ �ts
v2

0

k2
s

h2
s þ k2

s

4hs
ð1� e�2p=ks Þ; ð14Þ
and
DEk2 ¼ �
m1v2

0

2
ð1þ f2Þð1� e�2pfÞ ð15Þ
where
f ¼ hs

ks

� �2

¼ h2
s

a2
s � h2

s

: ð16Þ
Eq. (15) show that the amount of the energy dissipated at the soft collision depends on the value of the parameter f. Assum-
ing that hs is much smaller than as, Eq. (16) can be approximately rewritten as
f ¼ h2
s

a2
s � h2

s

� h2
s

a2
s
¼ t2

s m1

4m2
1ks
¼ 1

4m2
1

t2
s

ks
: ð17Þ
Eq. (17) shows that the amount of energy dissipated for two different bases is the same (which is equivalent with the pres-
ervation of the same restitution coefficient in the hard impact model) when the following relation is fulfilled
ts2

ts1

� �2

¼ ks2

ks1
; ð18Þ
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where subscripts 1 and 2 denote, respectively, base 1 and 2 so for example increasing the stiffness four times one has to in-
crease the damping twice.

Denoting kinetic energy of the colliding body before and after the impact respectively as E�k and Eþk , one gets
Eþk ¼ E�k þ DEk2 ¼ E�k ð1� ð1þ f2Þð1� e�2pfÞÞ; ð19Þ
and equivalent restitution coefficient:
kr ¼

ffiffiffiffiffiffi
Eþk
E�k

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ð1þ f2Þð1� e�2pfÞÞ

q
: ð20Þ
The relation between parameters kr and f2 given by Eq. (20) is described in Fig. 2(a). The increase of the damping coefficient ts

results in the decrease of the equivalent restitution coefficient kr.
Eqs. (16) and (20) allow the determination of the base parameters as and hs equivalent to the given value of the restitution

coefficient kr. Fig. 2(b) shows the values of hs versus a2
s for kr = 0.1, 0.2, . . ., 0.9. The example of the relation between kr and hs

for given values of a2
s and the dependence of the contact time si on the parameters hs and as given by
si ¼
1
2

Ti ¼
p
ks
¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
s � h2

s

q ; ð21Þ
is shown in Fig. 2(c). It should be mentioned here that Eq. (21) is valid under the previously made assumption that coefficient
ks is large enough to neglect static displacement of the spring, i.e., xst = 0.0 is the static equilibrium of this oscillator. For very
soft base one has to consider that the contact time si is larger than the value given by Eq. (21). Table 1 presents the values of
parameters hs and a2

s equivalent to the restitution coefficients kr = 0.6 and kr = 0.9.

3. Comparison of soft and hard impact models

To compare two impact models consider the collision of the mass m1 = 1.0 thrown from the height H0 = 1.0 which collides
with the horizontal base. The results of our calculations are shown in Fig. 3(a–c) (restitution coefficient kr = 0.9) and Fig. 4(a
and b) (restitution coefficient kr = 0.6). Fig. 3(a) shows the time series of the mass displacement x1(s). The grey line repre-
sents the results obtained using hard impact model (restitution coefficient kr = 0.9). Notice that the successive maximum
heights Hi, fulfill condition Hi ¼ k2

r Hi�1. The black line denotes the same time series calculated for the soft impact model with
the following parameters: a2

s ¼ 20;000; hs ¼ 4:74 (see Table 1). For m1 = 1.0, the stiffness and damping parameters of the
Fig. 2. Relations between parameters kr ;a2
s ; hs; f and si in hard and soft impact models.



Table 1
Values of the damping coefficient hs and base eigenfrequency a2

s equivalent, respectively, to the restitution coefficients kr = 0.6 and kr = 0.9.

kr a2
s hs

0.6 100,000 48.75
20,000 21.81
2000 6.9
100 1.55
10 0.488

0.9 100,000 10.59
20,000 4.74
2000 1.5
100 0.34
10 0.106

Fig. 3. Time series of the mass m1 displacement x1 (s); soft impacts (black line), hard impacts (grey line): (a) kr ¼ 0:9; a2
s ¼ 20; 000; hs ¼ 4:75, (b) details of

the first collision, (c); kr ¼ 0:9; a2
s ¼ 2000; hs ¼ 1:5.
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oscillator created by the colliding body and the fender are, respectively, ks = 20,000 and ts = 9.48. As according to our assump-
tions in both cases the energy dissipation is the same, and a static displacement of the spring with high stiffness ks is small,
the maximum heights Hi of the impacting body are approximately the same in both cases. Nonzero contact time in the soft
impact model implies that the successive collisions do not occur in the same time, the eighth collision (the last one shown in
Fig. 3(a)) occurs after the time s8f = 4.73, which is larger than the equivalent time s8N = 4.6 in hard impact case by 2.6% The
first collision in the soft impact model is show in Fig. 3(b). Its duration time is si = 0.0225, and a penetration depth is
Hi = 0.0302. The results for more stiff base described by parameters a2

s ¼ 2000; hs ¼ 1:5 are show in Fig. 3(c). Notice that
in this case the duration of the first collision increases to si = 0.073, and the penetration depth to Hi = 0.099. The duration
of the eighth collision (no more visible in the scale of the figure) is s8f = 5.06. During the collision with the base of the
low stiffness, the static displacement of the fender Hs0 = m1g/ks � 0.005 cannot be neglected. As the result of this maximum
height Hi of the colliding body after successive impacts are smaller than in the model with hard impacts and equal to H1 = 0.8
(0.81), H2 = 0.63 (0.656), H3 = 0.5 (0.53), etc. The results in brackets are for the model with hard impacts.

Fig. 4(a and b) shows the time series of the mass displacement x1(s). The grey line represents the results obtained using
the hard impact model (restitution coefficient kr = 0.6). Notice that the successive maximum heights Hi, fulfill condition
Hi ¼ k2

r Hi�1. The black line in Fig. 4(a) denotes the same time series calculated for the soft impact model with the following



Fig. 4. Time series of mass m1 displacement x1 (s); soft impacts (black line), hard impacts (grey line): (a) kr ¼ 0:6; a2
s ¼ 20;000; hs ¼ 21:81, (b)

kr ¼ 0:6; a2
s ¼ 2000; hs ¼ 6:9.
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parameters: a2
s ¼ 20;000 and hs = 21.81. As in the previous case (Fig. 3(a)) the successive maximum heights Hi (H1 = 0.36,

H2 = 0.13. . .) fulfill condition Hi ¼ k2
r Hi�1. Nonzero duration time of the successive collisions in the soft impact model results

in the collision delay. The results obtained for a2
s ¼ 2000; hs ¼ 6:9 and initial height H0 = 0.1 (which is only 20 times larger

than the static displacement of the fender Hs0 � 0.005) are presented in Fig. 4(b). As the result of such a small difference be-
tween H0 and Hs0, the successive maximum heights Hi (H1 = 0.027 (0.036), H2 = 0.004 (0.013). . . where the results in brackets
are for the model with hard impacts) are significantly smaller than in the hard impact model.

Our results show that both modeling methods give similar results only in the case when the contact time and penetration
depth are sufficiently small, i.e., when the stiffness of the base is sufficiently large. For the bases with lower stiffness one
observed a significant difference between the results obtained using soft and hard impact modeling. These differences are
created by the external forces acting on the colliding body during the nonzero contact time.
4. Example

As an example consider the oscillations of the two degree-of-freedom system shown in Fig. 5(a). It consists of the light
elastic beam of the length l, elasticity modulus E and inertial moment I. Two concentrated masses m1 and m2 are connected
to the beam. Mass m1 is placed at the free end of the beam and mass m2 is located at the distance l2 from the mounted end.
The transversal oscillations of the beam are forced by the harmonic excitation of the frequency g and the amplitude eg2,
which acts on mass m1. The viscous damping with the damping coefficients proportional to the masses, respectively, tm1

and tm2 is assumed. During the oscillations mass m1 can collide with the base located at the distance d from the static equi-
librium position of the system.
Fig. 5. Cantilever beam with a concentrated mass at its free end: (a) 2DOF model, (b) continuous model with infinite number of DOF.



Table 2
Parameter sets of the considered two degree-of-freedom systems 2DOF-1 and 2DOF-2 shown in Fig. 6(a).

Name m1 m2 l2 t a1 a2 M mb

2DOF-1 0.92 0.08 0.34 0.23 1.04 28.4 0.9 0.1
2DOF-2 0.28 0.72 0.31 0.23 1.78 11.7 0.1 0.9
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In the time intervals between the impacts the equations of motion are as follows:
Fig. 6.
m2 = 0.0
a2

s ¼ 20
m1 0
0 m2

� �
€x1

€x2

� �
þ

#m1 0
0 #m2

� �
_x1

_x2

� �
þ

KB11 KB12

KB21 KB22

� �
x1

x2

� �
¼ eg2

0

( )
sinðgtÞ; ð22Þ
with the following stiffness matrix
KB11 KB12

KB21 KB22

� �
¼ 1

W
12EIl32 �6EIl2

2ð3l� l2Þ
�6EIl2

2ð3l� l2Þ 12EIl3

" #
; ð23Þ
where
W ¼ 4l3l3
2 � l4

2ð3l� l2Þ2: ð24Þ
In the soft impact case as the fender is light, during the collision it is in contact with the colliding mass m1. Considering
this model in the description of the oscillations of the system shown in Fig. 5(a) one has to add coefficients ks and ts, respec-
tively, to the stiffness and damping matrixes in Eq. (22) so during the collision the equations of motion are as follow:
m1 0
0 m2

� �
€x1

€x2

� �
þ

#m1 þ ts 0
0 #m2

� �
_x1

_x2

� �
þ

KB11 þ ks KB12

KB21 KB22

� �
x1

x2

� �
¼ eg2

0

( )
sinðgtÞ: ð23Þ
Our previous studies [17] showed that the considered system of two degree-of-freedom can be considered as an approx-
imation of the class of the infinite dimensional systems, namely the systems with heavy spring elements. Particularly this
approximation is very useful in the qualitative identification of the system behavior and estimation of the chaos thresholds.
Bifurcation diagrams showing the displacements of mass xi observed at the time t = nTg = 2p/g, (n = 1,2,. . .) for 2DOF-1 system (m1 = 0.92 and
8), results for soft impact model with kr = 0.6 are shown in grey, results for soft impact model are shown in black: (a) a2

s ¼ 100; 000; hs ¼ 48:75, (b)
00; hs ¼ 6:9, (c) a2

s ¼ 100; hs ¼ 1:55, (d) a2
s ¼ 10; hs ¼ 0:48.
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The system shown in Fig. 5(b) which consists of a heavy beam of mass mb and mass M placed at its free end. The parameters
of the two degree-of freedom system (2DOF) which is equivalent to the infinite dimensional system show in Fig. 5(b) are
chosen in the following way:

– stiffness of the beam given by the parameter EI and its length are the same in both cases,
– total masses of both systems are the same, i.e., m1 + m2 = M + mb,
– the first two eigenfrequencies a1 and a2 are the same for both systems (this can be achieved by the appropriate location of

mass m2, i.e., the selection of the parameter l2 and appropriate selection of mass ratio m2/m1.

More details on this procedure can be found in [17].
In the numerical calculations we consider two sets of parameters denoted respectively as 2DOF-1 and 2DOF-2 which are

shown in Table 2. In both cases we consider the same parameters which define the stiffness properties of the beam, i.e.,
E = 0.3333, I = 1.0, l = 1.0, so the one degree-of-freedom (1DOF) system (m1 = 1.0 and m2 = 0.0) has eigenfrequency a which
is equal to 1 (a2 = 3EI/m1l). Damping coefficient t = 0.23 has been selected in such a way that the free oscillations decay in the
way given by the logarithmic decrement of damping D = ln(2).

In our numerical calculations we consider system parameters shown in Table 2. We calculated bifurcation diagrams
showing the displacements of the mass xi observed at the time t = nTg = 2p/g, where n = 1,2,. . . The frequency of external
excitation g has been taken as a bifurcation parameter. Fig. 6(a–d) presents the bifurcation diagram for the 2DOF-1 system
with m1 = 0.92 and m2 = 0.08. The grey points denote the case of hard impact modeling for kr = 0.6 and d = 0.0. Increasing the
frequency g one observes qualitatively different dynamical behavior of the system. We observe periodic motion with a per-
iod: Tg in the interval 1.11 < g < 2.82, 2Tg in the interval 3.43 < g < 4.86, 3Tg in the interval 5.52 < g < 6.95, and 4Tg for
g > 7.61. In all cases we observe one impact per period Tg. Between these intervals the system undergoes period-doubling
bifurcations leading to the multi-periodic behavior (up to period 50–60Tg) and chaotic motion. The black points in
Fig. 6(a) denote the case of the soft impact modeling with the parameters a2

s ¼ 100000:0 and hs = 48.75 (equivalent to the
restitution coefficient kr = 0.6 in hard impact modeling). Both diagrams are nearly identical. As it can be seen in Fig. 6(b) with
the decrease of the base stiffness to a2

s ¼ 2000 and its damping to hs = 6.9 the diagram (black points) does not change qual-
itatively. One observes small displacements of the thresholds of the low periodic behavior towards the lower values of the
frequency g. Fig. 6(c) shows the same bifurcation diagram for smaller values of a2

s ¼ 100:0 and hs = 1.55 (black points). Notice
that the stiffness of the base is still 100 times larger than the stiffness of the beam. Further displacements of the thresholds of
Fig. 7. Coexistence of two periodic attractors of 2DOF-1 system; m1 = 0.92, m2 = 0.08, soft impact model a2
s ¼ 10; hs ¼ 0:488; g ¼ 5:5: (a) basins of

attraction of Tg (white) and 3 Tg periodic attractors, (b) time series of period Tg motion, (c) time series of period 3 Tg motion.
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the low periodic behavior are visible. We observe periodic motion with a period: Tg for 1.0 < g < 2.65, 2Tg for 3.20 < g < 4.64,
3Tg for 5.13 < g < 668, and 4Tg for g > 6.87. The intervals with multi-periodic behavior become smaller. This type of behavior
can be observed for 4.64 < g < 4.8 and 6.68 < g < 6.87. Further decrease of the base stiffness to a2

s ¼ 10:0 and hs = 0.488 leads
to the complete disappearance of these intervals as can be seen in Fig. 6(c). For g = 2.61 one observes period-doubling bifur-
cation in which the periodic motion with period Tg is replaced by the periodic motion with period 2Tg. The reverse bifurca-
tion takes place for g = 5.01 and one observes a periodic behavior with a period Tg. Additionally for g > 5.01 we observe the
co-existence of two different periodic attractors. Beside the Tg-periodic attractor shown in Fig. 6(d) one can observe 3Tg-peri-
odic attractor. The basins of attraction of both attractors are shown in Fig. 7(a). The basins of Tg-and 3Tg-periodic attractors
are shown, respectively, in white and black. The examples of the time evolutions on these attractors are shown in Fig. 7(b)
(period Tg) and Fig. 7(c) (period 3Tg). The displacements of the colliding mass and a fender are shown respectively in black
and grey. Time is rescaled as the number of the periods of the excitation force N.

Fig. 8(a–c) shows the bifurcation diagrams for 2DOF-2 system with m1 = 0.28 and m2 = 0.72. The results for the hard im-
pact case with kr = 0.6 and d = 0.0 are shown in grey (Fig. 8(a–c)). Equivalent diagrams for the soft impact models described
by: a2

s ¼ 100000:0 and hs ¼ 48:75; a2
s ¼ 2000:0 and hs = 6.9, a2

s ¼ 100:0 and hs = 1.55 are shown, respectively, in Fig. 8(a), (b)
and (c). Notice that similarly as in the case of Fig. 6(a–d) one observes the displacements of the thresholds of low periodic
behavior towards lower values of the frequency g (Fig. 8(b)) and the disappearance of multi-periodic and chaotic behavior
(Fig. 8(c)).

5. Conclusions

We compare two different methods of impact modeling, namely hard and soft impacts, and their influence on the dynam-
ical behavior of the vibro-impact systems in which the rigid body collides with an elastic base. The conditions which allow
the same rate of energy dissipation in dynamical systems with soft and hard impacts have been derived. They allow the con-
struction of various soft impact models equivalent to the hard impact model with a given restitution coefficient.

Our results allow to draw the important conclusions:
1. For the large values of the stiffness coefficient of the base both models give the same results.
Fig. 8. Bifurcation diagrams showing the displacements of mass xi observed at the time t = nTg = 2p/g, (n = 1,2,. . .) for 2DOF-2 system (m1 = 0.28 and
m2 = 0.72), results for soft impact model with kr = 0.6 are shown in grey, results for soft impact model are shown in black: (a) a2

s ¼ 100; 000; hs ¼ 48:75, (b)
a2

s ¼ 2000; hs ¼ 6:9, (c) a2
s ¼ 100; hs ¼ 1:55.
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2. For lower values of this coefficient when the duration of body contact cannot be neglected the results of both methods
diverge from each other. These differences occur as the result of external forces such as gravity, external excitation, which
act on the colliding body during the contact. In hard impact modeling this effect is neglected.

3. In soft impact models one has to choose two independent parameters a2
s and hs. Keeping the same rate of energy dissi-

pation one can select the contact time and penetration depth as observed in the real experiment. This encourages the
applications of new materials as elastic support for fenders [18–20].

4. The decrease of the base stiffness in the soft impact modeling leads to the simplification of the system behavior in the
wide range of the external excitation frequency g. For the same rate of energy dissipation one observes only low periodic
solutions. This observation allows chaos control in real engineering systems.
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