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Dynamics of nonlinear systems is a very complicated problem with ma-
ny aspects to be recognized. Numerous methods are used to investigate
such systems. Their careful analysis is connected with long-time simula-
tions. Thus, there is great need for methods that would simplify these
processes.
In the paper, an application of Artificial Neural Networks (ANNs) sup-
porting the recognition of the energy flow and the synchronization with
use of Impact Maps is introduced. This connection applies an idea of the
Energy Vector Space in the system with impacts. An energy flow direc-
tion change with the synchronization as a transitional state is shown. A
new type of the index allowing one to control the system dynamic state
is introduced. Results of the numerical simulations are used in the neural
network teaching process. Results of a comparison of the straight impact
map simulation and the neural network prediction are shown. Prediction
of system parameters for the energy flow synchronization state with use
of the neural network is presented.

Key words: nonlinear dynamics, chaos synchronization, artificial neural
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1. Introduction

Artificial neural networks are nowadays one of the most intensively developing
scientific branches. It is related to many interdisciplinary aspects of neural
network applications. ANNs are used in robotics, neuroscience, general en-
gineering, chemistry, medicine, financial markets, mechanics, electronics, bio-
cybernetics, automatics, real neural network simulations,informatics, logistic
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systems, for image recognition, speech recognition, in optimisation problems,
for solving different problems of high complexity and unknown rules (Duch and
Pilichowski, 2007; Duch et al., 2000; Dudek-Dyduch et al., 2009; Markiewicz
and Ossowski, 2005; Ogiela et al., 2006, 2008; Ossowski et al., 2004, 2005; Sza-
leniec et al., 2008; Tadeusiewicz et al., 2008; Tadeusiewicz and Ogiela, 2004;
Zhang and Sun, 2004). In the paper, ANNs are used as a tool supporting
investigations of the coupled oscillating system dynamics. In some aspects,
prediction of the dynamical system behaviour with ANNs is similar to energy
methods – both can be treated as a black box with some information given as
the input and, after realization of some functions in the black box, a result is
received as the output. A new method applying an index, based on the idea
taken from energy methods, is introduced in the paper. An energy flow as the
final effect of external and internal interactions is a very important aspect of
the system dynamics, and still arouses much interest in the scientific world
(Gourdon and Lamarque, 2005; Hu et al., 2004; Keane and Price, 1991; Ki-
shimoto et al., 1995; Korotkov, 2002; Mace, 1992, 1994; Sado, 1992; Maidanik
and Becker, 2003; Tsakirtzis et al., 2005). Different methods are applied to so-
lve problems connected with the energy flow: Statistical Energy Analysis (Hu
et al., 2004; Kishimoto et al., 1995; Mace, 1992), Finite Element Method (Hu
et al., 2004), mode theory (Sado, 1992). Observations of the system energy
state or its part give a possibility to determine and explain the reasons of the
system behaviour. It allows one to control the system dynamics, which is espe-
cially important in chaotic systems (Dąbrowski and Kapitaniak, 2001, 2009;
Kapitaniak, 1996). Such control can cause, for instance, oscillation reduction
(Dąbrowski, 2000; Dąbrowski and Kapitaniak, 2001, 2009), giving thus new
possibilities of the system application. Simultaneously, systems with coupling
and synchronization between coupled systems belong nowadays to the most
often investigated phenomena (Astakhov et al., 1999; Blekhman II, 1988; Czoł-
czynski et al., 2009; Fries et al., 2001; Kapitaniak and Maistrenko, 1998; Keane
and Price, 1991; Lachaux et al., 2000, 2003; Lindner and Schimansky-Geier,
2000; Mace, 1994; Nichols et al., 2007; Pecora et al., 1997; Rodrigues et al.,
1999; Shu et al., 2005; Stefański, 2004; Stefański et al., 2005; Yampi et al.,
2007). One of the analyzed coupling types is an impact coupling (Błażejczyk-
Okolewska et al., 2001, 2007; Dąbrowski, 2000; Dąbrowski and Kapitaniak,
2009; Kapitaniak and Wiercigroch, 2000; Lee and Yan, 2006; Ma et al., 2008).
Because of the discontinuity of such systems, global system dynamics can be
recognized analytically only in particular cases (Aidanpaa and Gupta, 1993;
Czołczyński, 2001; Peterka, 1970; Peterka and Vacik, 1992). In the paper, a
new method of global dynamics analysis of systems with impacts is proposed.
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A structure and an application of the Impact Map in investigations of the
coupled system dynamics are introduced. This structure applies an idea of the
Energy Vector Space (Dąbrowski, 2000, 2005, 2007, 2009) in the system with
impacts. An energy flow direction change with synchronization as a transitio-
nal state is shown. Results of the numerical simulations are used in the neural
network teaching process. A comparison of results of the straight impact map
simulation and the neural network prediction is shown. Prediction of system
parameters for the energy flow synchronization state with use of the neural
network is presented.

2. Method algorithm

A simplified algorithm is shown in Fig. 1. The task for this algorithm was to
work out a method that finds a neural network to solve the problem of the
energy flow synchronization prediction. Such investigations of the nonlinear
system dynamics are very often related to investigations of the control index
behaviour. In such cases, a given value of the index is connected with some
specific system behaviour. The task is how to find areas of the desired index
values. Depending on the system type, different methods can be applied. A
bifurcation diagram is most often the supporting tool for such an analysis.
However, it is slightly like wandering in the dark. To make stable investiga-
tions without introducing disturbances causing unstable motions, or jumping
between coexisting attractors, it is required to change slightly tuning of the
system coefficient while creating such a diagram. The method is simple but
for the global investigations of the whole system parameters with such delica-
te tuning, one would need much time. A new method that simplifies such an
analysis is proposed in the paper. Investigations with a new type of the control
index supported by the artificial neural network are introduced. The first step
of the system study are numerical simulations and preparation of a teaching
set. The teaching set does not have to be very accurate. Thus, a special method
to prepare such a set is proposed and this is the clue to the simplification of
such an analysis. The idea of this method is presented in Fig. 2. One can see a
set of bifurcation diagrams in it. Each line represents one bifurcation diagram
and shows the direction of the system parameter changes. Note that unlike the
traditional bifurcation diagrams, two system parameters are changed at the
same time. Thanks to that it is possible to prepare the set of dispersed data
representing the system dynamics with slightly tuning of the system parame-
ters without introducing disturbances causing unstable motions, or jumping
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Fig. 1. A simplified algorithm of the proposed method

between coexisting attractors. Preparation of the teaching set was made in
Delphi, with the Runge-Kutta method applied to integrate the differential
equation set. Then, the teaching set was entered into the Statistica Neural
Network software. After the teaching procedure, such a network works as an
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approximator, allowing one to find the system control index for the whole sys-
tem parameter range. To find the desired control index value output, neural
network values were examined. In the case under consideration, the desired
control index value represents the energy flow synchronization phenomena of
coupled systems.

Fig. 2. The set of bifurcation diagrams

3. Introduction to the Impact Map structure and the energy flow

analysis

Consider the system shown in Fig. 3. For some ranges of the system parame-
ters, it works as an impact damper of motion of the oscillator µ (Dąbrowski,
2000; Dąbrowski and Kapitaniak, 2001, 2009). The system consists of three
oscillators. The external harmonic force excites the oscillator µ. It is joined
with the classical dynamical absorber µ1. This absorber is allowed to collide
with the third oscillator µ2 excited by the second external harmonic force.
In the periods between impacts, the mathematical model of the system is

given by six differential equations of the first order

ẋ = y ẏ = [F sin ητ − cy − c1(y − y1)− σx− σ1(x− x1)]
1

µ

ẋ1 = y1 ẏ1 = [−c1(y1 − y)− σ1(x1 − x)]
1

µ1

ẋ2 = y2 ẏ2 = [ΘF sin(ητ + ϕ)− c2y2 − σ2x2]
1

µ2

(3.1)
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Fig. 3. The physical model of the system

where: µ, µ1, µ2 are masses, σ, σ1, σ2 – stiffness coefficients of the springs,
c, c1, c2 – damping coefficients, F – amplitude of the external excitation force
acting on µ, F2 – amplitude of the external excitation force acting on µ2,
ω – frequency of the external excitation force

η =
ω

α
τ = αt α =

√

σ

µ
Θ =
F2

F
(3.2)

The 4-th order Runge-Kutta method is applied to solve this set of differential
equations.
The impacts between the dynamical and impact absorbers are entered in-

to the mathematical model over the restitution coefficient r and the momen-
tum equation. The impact point searching algorithm consisted of two stages
repeated with a decreasing time step until the distance between impacting
oscillators is less than the parameter ε.
• Stage 1 – Searching for the crossing point of the trajectories.
• Stage 2 – Making one step back.

The possibility of motion with impacting oscillators ”glued together” was also
considered.
The phase vector in the standard phase space R

6 is represented by six
components, namely

x; y; x1; y1; x2; y2 (3.3)

Transform the phase space as follows:
1. Instead of the displacement coordinates x, x1, x2, take the deflections
of the springs.

z = x z1 = x1 − x z2 = x2 (3.4)
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2. Depending on the coefficients σi and µi, squeeze and stretch the space
along the directions of zi and yi.

In the following two steps, a new energy space can be obtained.

In the first step, one obtains a new space V with the basis E

E = (ez,ey,e1z,e1y,e2z,e2y) (3.5)

where
ez = [1, 0, 0, 0, 0, 0]

⊤
ey = [0, 1, 0, 0, 0, 0]

⊤

e1z = [0, 0, 1, 0, 0, 0]
⊤

e1y = [0, 0, 0, 1, 0, 0]
⊤

e2z = [0, 0, 0, 0, 1, 0]
⊤

e2y = [0, 0, 0, 0, 0, 1]
⊤

(3.6)

Change the basis vectors of the space V. Then, the new energy basis EN of
this space is

EN = (bz, by, b1z, b1y, b2z, b2y) (3.7)

where

bz = [(
√
σ)−1, 0, 0, 0, 0, 0]⊤ by = [0, (

√
µ)−1, 0, 0, 0, 0]⊤

b1z = [0, 0, (
√
σ1)
−1, 0, 0, 0]⊤ b1y = [0, 0, 0, (

√
µ1)
−1, 0, 0]⊤

b2z = [0, 0, 0, 0, (
√
σ2)
−1, 0]⊤ b2y = [0, 0, 0, 0, 0, (

√
µ2)
−1]⊤

(3.8)

The transition matrix AEN←E from the basis E to the basis EN of the energy
space takes the form

AEN←E =



















√
σ 0 0 0 0 0
0
√
µ 0 0 0 0

0 0
√
σ1 0 0 0

0 0 0
√
µ1 0 0

0 0 0 0
√
σ2 0

0 0 0 0 0
√
µ2



















(3.9)

The coordinates of the vector ve = [ze, ye, z1e, y1e, z2e, y2e]
⊤

EN
with respect to

the energy basis EN can be obtained from the vector v with respect to the
basis E, using the transition matrix

ve = AEN←Ev (3.10)

Then

ve = [
√
σz,
√
µy,
√
σ1z1,

√
µ1y1,

√
σ2z2,

√
µ2y2]

⊤

EN
(3.11)



878 A. Dąbrowski et al.

The norm of the vector ve in the energy space with the energy product is as
follows

|ve| =
√

〈ve,ve〉 =

=

√

1

2
[
√
σ(z)2 + (

√
µy)2 + (

√
σ1z1)2 + (

√
µ1y1)2 + (

√
σ2z2)2 + (

√
µ2y2)2] =

(3.12)

=

√

σz2

2
+
µy2

2
+
σ1z
2
1

2
+
µ1y
2
1

2
+
σ2z
2
2

2
+
µ2y
2
2

2
=

=
√

Ep + Ek + Ep1 + Ek1 + Ep2 + Ek2

where: Ep is the potential energy accumulated in the spring σ, Ek – kinetic
energy of the mass µ, Ep1 – potential energy accumulated in the spring σ1,
Ek1 – kinetic energy of the mass µ1, Ep2 – potential energy accumulated in
the spring σ2, Ek2 – kinetic energy of the mass µ2.
From (3.12) it can be seen that the norm of the vector ve in the energy

space is a square root of the whole energy accumulated in the system.
Using AEN←E, one can find the mathematical model of the system in the

transformed space given by the following differential equations

że =

√

σ

µ
ye

ẏe = −
c

µ
ye −
c1

µ
ye +

c1√
µµ1
y1e −

√

σ

µ
ze +

√

σ1

µ
z1e +

F

µ
sin ητ

ż1e =

√

σ1

µ1
y1e −

√

σ1

µ
ye ẏ1e = −

√

σ1

µ1
z1e −

c1

µ1
y1e +

c1√
µµ1
ye

ż2e =

√

σ2

µ2
y2e ẏ2e = −

√

σ2

µ2
z2e −

c2

µ2
y2e

(3.13)
where

ze = sgn (x)
√

Ep ye = sgn(y)
√
Ek

z1e = sgn(x1)
√

Ep1 y1e = sgn(y1)
√
Ek1

z2e = sgn(x2)
√

Ep2 y2e = sgn(y2)
√
Ek2

(3.14)

3.1. Impact map

Let π be the plane determined by the basis vectors (Fig. 4a and Fig. 5)

b1y = [0, 0, 0, (
√
µ1)
−1, 0, 0]⊤ b2y = [0, 0, 0, 0, 0, (

√
µ2)
−1]⊤ (3.15)

The co-ordinates y1e and y2e, obtained from y1 and y2 with use of
AEN←E, correspond to the kinetic energies of the masses µ1 and µ2, respec-
tively. The position of the vector is marked on this plane just before and after



Application of artificial neural networks... 879

the impact. Thus, this plane is a special kind of the impact map. In order to
make this map clearer, only half of the points are shown.

Fig. 4. The impact map and oscillators µ1 and µ2 time displacement diagrams;
ϕ = 3 rad, η = 0.92, µ = 1kg, µ1 = µ2 = 0.5 kg, σ = 1N/m, σ1 = σ2 = 0.78N/m,
c = 0.04Ns/m, c1 = c2 = 0.025Ns/m, F = 0.01N, δ = 0.0223m, r = 1, Θ = 0.932

Fig. 5. The impact map; η = 1.23, µ = 1kg, µ1 = µ2 = 0.5 kg, σ = 1N/m,
σ1 = σ2 = 0.78N/m, c = 0.04Ns/m, c1 = c2 = 0.025Ns/m, F = 0.01N,

δ = 0.0223m, r = 0.85, ϕ = 0, Θ = 0.1926

As the choice criterion
y1e > y2e (3.16)

has been applied. Thanks to this simplification, the before and after impact
parts of the map are separated, and the changes of the vectors during the each
impact can be clearly seen.
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The consideration of the position and the norm of the vector on this map
allows us to conclude about the energy flow between the dynamical and impact
absorbers and also about the energy dissipation during each collision. The
energy dissipation is introduced into the mathematical model of the system
over the restitution coefficient r.
Let us take into consideration vectors in the energy space just before

and after the impact and denote them ve and bmv
′
e, respectively. Let veπ

and bmv′eπ be the projections of the ve and v
′
e on the plane π, correspondin-

gly (Fig. 4a).
To obtain the transformation of the vector veπ during the impact, one

can use the Newton impact criterion and the momentum equation. But these
are laws that can be applied in the phase space only. Thus, to obtain this
transformation, we have to consider it in three stages.

1. The first one is a transformation from the energy to phase space.

Let us denote this energy subspace transformation as (AπEN←E)
−1:

v = (AπEN←E)
−1
veπ

The transformation (AπEN←E)
−1 is always possible because of the line-

arity of the transformation AEN←E and the same dimension of the phase
and energy space.

2. The second transformation stage consists ofimplementation of the phy-
sical laws modelling the impact:

— The momentum equation

µ1u1 + µ2u2 = µ1u
′

1 + µ2u
′

2 (3.17)

— The Newton equation

u′1 − u′2 = −r(u1 − u2) (3.18)

where
v = [u1, u2] v

′ = [u′1, u
′

2]

are velocities of µ1 and µ2 before and after the impact, respectively.

This transformation stage can be described by

AEN =









µ− r
µ+ 1

1 + r

µ+ 1
µ+ µr

µ+ 1

1− µr
µ+ 1









(3.19)
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where

µ =
µ1

µ2

and r is the restitution coefficient.

Then

v
′ = AEN = v (3.20)

3. The third transformation stage is a return from the phase to energy
space with use of the transformation AEN←E

v
′

eπ = (A
π
EN←E

)v′ (3.21)

Finally

v
′

eπ = (A
π
EN←E

)AEN (A
π
EN←E

)−1ve (3.22)

There exists a case when the transformations of the vector in the phase
and energy space are the same. When µ1 = µ2, then

(AπEN←E) =

[

µ1 0
0 µ1

]

= µ1

[

1 0
0 1

]

(3.23)

(AπEN←E)
−1 =

[

µ1 0
0 µ1

]−1

=
1

µ1

[

1 0
0 1

]

and finally

v
′

eπ = AENve (3.24)

It means that the transformations of the vectors during the impact in the
phase and energy space are the same. In that case, the transformation
during the impact can be considered without the first and third stages.
The vector transformation is described by AEN then.

In that case, the transformation during the impact is

AEN =









µ− r
µ+ 1

1 + r

µ+ 1
µ+ µr

µ+ 1

1− µr
µ+ 1









(3.25)

The eigenvalues of the AEN matrix are

λ1 = −rλ2 = 1 (3.26)
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and the corresponding eigenvectors

w1 =
[−1
µ
, 1
]⊤

w2 = [1, 1]
⊤ (3.27)

respectively.

The directions of the eigenvectors are shown in Fig. 4a and Fig. 5. Note
that during the impact, the vector veπ is transformed only along the direction
given by the eigenvector w1.

3.2. Energy flow, dissipation and synchronization

The energy dissipation in time of each collision can be found from the
change of the norm of the energy space vector

|veπ| − |v′eπ| (3.28)

The maximum dissipation of the energy takes place when the vector veπ
has the same direction as the eigenvector w1. Then

v
′

eπ = λ1veπ (3.29)

Taking in the consideration that

|veπ| =
√

EK1 + EK2 (3.30)

where: EK1, EK2 – kinetic energy of the mass µ1 and µ2 before the impact,
respectively, and

|v′eπ| =
√

E′K1 + E
′

K2 (3.31)

where: E′K1, E
′

K2 – kinetic energy of the mass µ1 and µ2 after the impact.
After substituting Eqs. (3.30) and (3.31) into Eq. (3.29), it can be found

that the energy relation after and before the impact assumes the form

E′K1 + E
′

K2

EK1 + EK2
= λ21 = r

2 (3.32)

The closer the direction of the vector veπ is to the second eigenvector w2,
the less energy dissipation occurs. In the case when the directions of veπ
and w2 are almost the same, there is almost no energy dissipation during the
collision. The velocities of the oscillators µ1 and µ2 are almost equal then,
and in practice a small disturbance can cause that the impact occurs or not.
It is the so-called grazing collision and it causes chaotic motion of the system.
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Fig. 6. (a) x1Bbifurcation diagram, (b) Reduced Inertia Moment bifurcation
diagram; η = 1.23, µ = 1kg, µ1 = µ2 = 0.5 kg, σ = 1N/m, σ1 = σ2 = 0.78N/m,
c = 0.04Ns/m, c1 = c2 = 0.025Ns/m, F = 0.01N, δ = 0.0223m, r = 0.85, ϕ = 0

These special points can be seen in Figs. 2, 4 and Fig. 6a as common points
of the before and after impact attractors. Such points can be observed in the
time dependence chart in Fig. 6b as well.

The transformation matrix AEN allows one also to divide the impact map
into two kinds of fields: the first one for the case when the energy flows during
the impact from the dynamical to impact absorber and the second one when
the energy flows in the opposite direction.

Consider the matrix AEN in the case µ1 = µ2

AEN =









1− r
2

1 + r

2
1 + r

2

1− r
2









(3.33)

Let

veπ = [v1, v2]
⊤

v
′

eπ = [v
′

1, v
′

2]
⊤ (3.34)

Then

v
′

eπ = AENveπ (3.35)

so
[

v′1
v′2

]

=









1− r
2

1 + r

2
1 + r

2

1− r
2









[

v1
v2

]

(3.36)
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The energy flow from the dynamical to impact absorber is given by the con-
dition

|v′1| ¬ |v1| (3.37)

or the equivalent

−v1 ¬ v′1 ¬ v1 (3.38)

Consider:

1. v′1 = v1

The condition is satisfied when the directions of veπ and the eigenvec-
tor w2 are the same.

2. v′1 = −v1
Then

−v1 =
1− r
2
v1 +
1 + r

2
v2 (3.39)

and we obtain

v2 = −
3− r
1 + r

v1 (3.40)

For the case shown in Fig. 5, r = 0.85 and then

v2 = −
43

37
v1 (3.41)

As a result, the energy flow from the dynamical to impact absorber
occurs:

— if v1 > 0

−43
37
v1 ¬ v2 ¬ v1 (3.42)

— if v1 < 0

v1 ¬ v2 ¬ −
43

37
v1 (3.43)

The field of the energy flow along this direction is marked in Fig. 2 in
grey. Note that it is just for y1e ¿ y2e, which was the criterion of the impact
choice, see Eq. (3.16). As can be seen, during the impacts in the case under
consideration, the energy flows in both directions. The amount of energy that
flows in each direction can be quantified with use of the coefficients ϑ1 and ϑ2
introduced below.

One can also treat the energy flow during each impact as a change of the
inertia moment of the map before and after the impact.
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Consider the coordinates v1, v2 and v
′
1, v
′
2 of the vectors before and after

the impact (see Fig. 4). From the structure of the energy space, the kinetic
energies Ek1 and Ek2 of the dynamical and impact absorber are, respectively

v21 = EK1 v22 = EK2

v′1
2 = E′K1 v′2

2 = E′K2
(3.44)

From Eqs. (3.44) and Fig. 4, it can be seen that these energies are equal to
the inertia moments of the considered point against the respective axis.
Thus, the energy changes in time of each impact along the directions of

y1e and y2e

∆EK1 = E
′

K1 −EK1 = v′1
2 − v21

(3.45)
∆EK2 = E

′

K2 −EK2 = v′2
2 − v22

Considering all the n impacts on the map sums of the energy changes
∆EK1 and ∆EK2

∑

∆EK1 =
∑

(E′K1 − EK1) =
∑

(v′1
2 − v21)

(3.46)
∑

∆EK2 =
∑

(E′K2 − EK2) =
∑

(v′2
2 − v22)

and denoting the inertia moments of the before and after impact parts of the
map as

∑

v′1
2 = I ′1

∑

v21 = I1
∑

v′2
2 = I ′2

∑

v22 = I2
(3.47)

the energy that has flown between the dynamical and impact absorber during
all the impacts can be treated as a change of the inertia moments of the whole
map as regards the respective axis

∑

∆EK1 = I
′

1 − I1
∑

∆EK2 = I
′

2 − I2 (3.48)

The energy changes during each of n impacts can be considered as the
average amount of the energy that flows during one impact

∑

∆EK1

n
=
I ′1 − I1
n
= ϑ1

∑

∆EK2

n
=
I ′2 − I2
n
= ϑ2 (3.49)

and the energy flow criterion formulated as ϑ1 > ϑ2 for the flow from the
dynamical to impact absorber, and ϑ1 < ϑ2 for the flow in the opposite
direction.
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On the basis of the ϑ1 and ϑ2, a synchronization index can be introduced

ζ = ϑ1 − ϑ2

Note that the condition ζ > 02 is equivalent to ϑ1 > ϑ2 and ζ < 02 is
equivalent to ϑ1 < ϑ2.
In consequence, its zero value represents the energy synchronization state,

where on average the same amount of energy flows between the systems in
both the directions. This index was applied in searching for the energy flow
synchronization with use of the ANN.

Changes in the energy flow depending on the system parameter Θ, where

Θ =
F

F2
(3.50)

are shown in Fig. 6. The system parameter set was chosen in such a way
that the behaviour of parameters ϑ1 and ϑ2 for different types of the system
dynamics can be observed. One can see the regions where the energy flows
from the dynamical to impact absorber ϑ1 > ϑ2 and in the opposite direction,
when the ϑ1 curve lies under the ϑ2 curve. What is important, even though
there exist chaotic regions, which can be seen in the bifurcation diagram in
Fig. 6a, the energy flow coefficients ϑ1, ϑ2 behave very stable. Their changes
in the regions of the bifurcation points can be observed as well. Thus, not
only a local impact dynamics can be controlled with use of them, but also the
global system behaviour.

It is also advantageous to consider the ϑ1 and ϑ2 curve intersection po-
int. Such a point appears when the average amount of the energy that flows
out/into the coupled systems is the same. It can be seen in Fig. 6 and Fig. 7.
These cases are chosen to illustrate different types of the energy flow synchro-
nization.

The first one, presented in Fig. 6, shows the chaotic energy flow synchroni-
zation point as a transition point between the flow of energy from the dynami-
cal to impact absorber and the flow in the opposite direction. Such a point lies
under the horizontal axis, which means a loss of energy of both the coupled
systems. This energy is dissipated during the impacts. An impact map for this
synchronization point is depicted in Fig. 5. One can see the points that lie
along the eigenvector w2 direction, showing low velocity impacts that cause
the chaotic dynamics.

In Fig. 7, the next three synchronization points are presented. An impact
map and a time displacement diagram for the first of them are shown in Fig. 8.
One can see in Fig. 8a that the before and after impact attractors osculate each
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Fig. 7. (The Reduced Inertia Moment bifurcation diagram; η = 0.92, µ = 1kg,
µ1 = µ2 = 0.5 kg, σ = 1N/m, σ1 = σ2 = 0.78N/m, c = 0.04Ns/m,
c1 = c2 = 0.025Ns/m, F = 0.01N, δ = 0.0223m, r = 1, Θ = 0.932

Fig. 8. Synchronization point no. 1; (a) the impact map, (b) oscilators µ1 and µ2
time displacement diagrams; ϕ = 0.316 rad, η = 0.92, µ = 1kg, µ1 = µ2 = 0.5 kg,
σ = 1N/m, σ1 = σ2 = 0.78N/m, c = 0.04Ns/m, c1 = c2 = 0.025Ns/m, F = 0.01N,

δ = 0.0223m, r = 1, Θ = 0.932

other along the direction of w1. It means that there are numerous low velocity
impact points. They can be seen in the time dependent chart in Fig. 8b.

Figure 9 depicts the next synchronization point in the case of impactless
motion and no energy flow between the systems.

The synchronization point shown in Fig. 4 represents the periodic energy
flow synchronization. This point is presented only to clear up all the presen-
ted cases and analysis. The presented behaviour is possible only theoretically
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Fig. 9. Synchronization point no. 2; oscilators µ1 and µ2 time displacement
diagrams; ϕ = 3 rad, η = 0.92, µ = 1kg, µ1 = µ2 = 0.5 kg, σ = 1N/m,
σ1 = σ2 = 0.78N/m, c = 0.04Ns/m, c1 = c2 = 0.025Ns/m, F = 0.01N,

δ = 0.0223m, r = 1, Θ = 0.932

because the restitution coefficient r value equals 1. In such a case, the eige-
nvalue λ1 introduced in Eq. (3.26)

λ1 = −1 (3.51)

Taking into the consideration the second eigenvalue

λ2 = 1 (3.52)

(see Eq. (3.26)) it can be concluded that the transformation during the impacts
is very particular. First, let us note that the points lie on the grey region
border, introduced in Eqs. (3.37)-(3.43). This border divides the map into parts
of the energy flowing out and into the coupled system. This border position
of the considered points means that during the impacts the energy neither
flows to the dynamic absorber nor to the impact absorber. The impacts are
symmetrical, which one can see in Fig. 8b. According to Eqs. (3.51) and (3.52),
the points only jump from one part of the map to the second one and back
from the second to the first one. Norms of the vectors during transformations
do not change, which means no energy dissipation during the impacts.

3.3. Neural network predictions of the systems synchronization

The task for the neural network was to solve a prediction problem of the
synchronization index ζ for the given system parameters. An approximation
of the teaching function is presented in Fig. 9.
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The synchronization index

ζ = ϑ1 − ϑ2
shows the energy flow direction between colliding systems. In consequence,
its zero value represents the energy synchronization state, where on avera-
ge the same amount of energy flows between the systems in both directions.
For a teaching set, the system parameters r and Θ were considered (Fig. 2).
One can see a set of bifurcation diagrams in it. Each line represents one bi-
furcation diagram and shows the direction of the system parameter changes.
Note that unlike the traditional bifurcation diagrams, two system parameters
are changed at the same time. Thanks to that, it is possible to prepare a
set of dispersed data representing the system dynamics with slightly tuning of
the system parameters without introducing disturbances causing unstable mo-
tions, or jumping between coexisting attractors. Preparation of the teaching
set was made in Delphi, with the Runge-Kutta method applied to integrate the
differential equation set. An approximation of the teaching set is presented in
Fig. 10. Then, the teaching set was entered into the Statistica Neural Network
software. On the input of the ANN, the parameters r and Θ were given, and
on the output – the index ζ. After the teaching procedure, such a network can
approximate the index ζ values for the ranges of the parameters r and Θ that
were not introduced to the ANN during the teaching process. It allows one to
find the system control index for the whole system parameter range. To find
the desired control index value output, neural network values were examined.
In the case under consideration, the desired control index value represents the
energy flow synchronization phenomena of the coupled systems.
In the neural network type searching process, three-layer MLP and RBF

nonlinear networks were considered. The RBF-type network could not solve
the task, even though a very complex hidden layer topology was considered.
For the MLP network, the teaching process was much more efficient. In the
cases under consideration, an aggregation function of all neurons was linear.
The best results of the teaching process were obtained for hyperbolic tangent
activation functions of the hidden and third layer neurons.
As a result, a three-layer network with two inputs, one thousand neurons

in the hidden layer and one output, was obtained.
A comparison of this neural network prediction and numerical simulations

are shown in Fig. 11. One can see a good convergence of these results. And what
is important, the results are accurate very much in the zero neighbourhood,
which is a synchronization point.
Neural networks taught in such a way can be now used in dynamical sys-

tem investigations. A set of system parameters can be entered in the neural
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Fig. 10. An approximation of the teaching fuction; the input : r, Θ, output: ζ [J]

Fig. 11. Comparison of simulations (black) and neural network prediction of the
synchronization parameter ζ depending on the parameter Θ; η = 1.23, µ = 1kg,

µ1 = µ2 = 0.5 kg, σ = 1N/m, σ1 = σ2 = 0.78N/m, c = 0.04Ns/m,
c1 = c2 = 0.025Ns/m, F = 0.01N, δ = 0.0223m, r = 0.85, ϕ = 0

network input and values of the energy parameters will be obtained. In the
case one is interested in a given value of the output parameter, for instance,
the synchronization zero value, a numerical algorithm has to be developed to
find out the interesting parameters from the neural network answer. Examples
of such predictions obtained from the algorithm written in Delphi are shown in
Fig. 12. From the neural network output values, the algorithm chooses values
that belong to the ε range.
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Fig. 12. The neural network prediction of the synchronization parameter ζ
depending on r and Θ parameters

In the case of the monotonous dependence between the input and the
output, the problem of searching the accurate index value can be simplified. It
can be formulated in the inverse direction and the neural network can be taught
to provide the parameters under interest as the input during the teaching
process, and then, the respective system coefficients.

4. Conclusions

A structure and an application of the Impact Map supported with Artificial
Neural Networks in the energy flow and the synchronization analysis were
described. This structure applies an idea of the Energy Vector Space in the
system with impacts. A transformation of the traditional phase space into the
energy space was shown and a structure of the energy map was presented. This
structure was applied to investigate and recognize the energy flow, dissipation
and synchronization. Energy flow direction changes with synchronization as
a transitional state were shown. Different types of the energy flow synchroni-
zation were analyzed. The results of numerical simulations were used in the
neural network teaching process. A comparison of the results of the straight
impact map simulation and the neural network prediction was conducted. The
system index prediction for the energy flow synchronization state with use of
the neural network was presented. A new type of the index allowing one to
control the system dynamic state was introduced. It was shown that it was
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connected with the behaviour of the system and allowed one to find different
types of the system dynamics. It enables recognizing energy flow directions
and energy flow synchronization. It was demonstrated that even for chaotic
regions, it behaved very stable. It was shown that the proposed method al-
lowed us to predict the system behaviour, and also enabled searching for the
particular system behaviour. One could see that the index was changing in
the regions of bifurcations. Thus, with use of this index, not only local impact
dynamics, but also the global system behaviour can be controlled.
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Aplikacje sztucznych sieci neuronowych w badaniach parametrycznych

przepływu i synchronizacji energii

Streszczenie

Dynamika układów nieliniowych jest bardzo skomplikowanym zagadnieniem z wie-
loma aspektami wciąż pozostającymi bez rozwiązania. Do badań takich układów sto-
suje się wiele różnych metod. Wnikliwa analiza związana jest najczęściej z bardzo
czasochłonnymi symulacjami numerycznymi. Istnieje w związku z tym duże zapotrze-
bowanie na opracowanie metod upraszczających ten proces.
W artykule pokazano zastosowanie sztucznych sieci neuronowych (ANN) wspoma-

gających badania przepływu i synchronizacji energii. W badaniach zastosowano Mapy
Uderzeń, będące efektem przedstawienia dynamiki układu z uderzeniami w przestrze-
ni energetyczno-wektorowej. Pokazano zmiany przepływu energii z przejściowym sta-
nem synchronizacji. Wprowadzono nowy rodzaj parametru pozwalającego na określa-
nie stanu dynamicznego układu z uderzeniami. Wyniki przeprowadzonych symulacji
numerycznych zostały wykorzystane w procesie uczenia sztucznej sieci neuronowej.
Przedstawiono następnie porównanie wyników symulacji i rozwiązania uzyskanego
z sieci neuronowej oraz przewidywania parametrów układu, dla których występuje
synchronizacja przepływu energii.
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