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We study the occurrence of the synchronous rotation of a set of four uncoupled nonidentical double

pendula arranged into a cross structure mounted on a vertically excited platform. Under the

excitation, the pendula can rotate in different directions (counter-clockwise or clockwise). It has been

shown that after a transient, many different types of synchronous configurations with the constant

phase difference between pendula can be observed. The experimental results qualitatively agree with the

numerical simulations. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4740460]

Recent investigations have shown that the large sets of

oscillators (either coupled self-excited oscillators or

uncoupled passive oscillators externally excited by the

common signal) have a great potential in a large amount

of application areas ranging from physics and engineer-

ing to economy and biology. The main interest in these

studies is focussed on the occurrence of the synchronous

behavior. This phenomenon offers the most fundamental

example of emergent behavior. Synchronous states are

widely observed in nature and are common in mechanical

oscillatory systems. We study the dynamics of four noni-

dentical parametrically externally excited double pen-

dula. Our goal is to identify the possible synchronous

configurations.

I. INTRODUCTION

A parametrically excited pendulum is an archetype for

strongly nonlinear dynamical systems, which naturally has

been given a great deal of attention in literature (for exam-

ple, Refs. 1–12). Such a pendulum can perform both oscilla-

tory and rotational motions. Usually, more attention has been

paid to the oscillatory motion but recently more and more

studies are concentrated on the rotational motion.13–18 The

rotational responses of the pendulum attracted more interest

due to the concept of extracting energy from sea waves using

pendulum dynamics proposed by Wiercigroch.19–21 Such a

pendulum system can be used for converting pendulum base

oscillations into the rotational motion of the pendulum mass

(the oscillations of the base are caused by the sea waves,

whereas the pendulum rotational motion provides a driving

torque for an electrical generator).

Mechanical systems that contain rotating parts (for

example, vibro-exciters, unbalance rotors) are typical in en-

gineering applications and for years have been the subject of

intensive studies.22–24 One problem of scientific interest,

which among others occurs in such systems, is the phenom-

enon of synchronization of different rotating parts (Refs. 25

and 26, and references within). Despite different initial con-

ditions, after a sufficiently long transient, the rotating parts

move in the same way—complete synchronization, or a per-

manent constant shift is established between their displace-

ments, i.e., the angles of rotation—phase synchronization

(Refs. 27–34). Synchronization occurs due to dependence of

the periods of rotating elements motion and the displacement

of the base on which these elements are mounted.35

In the previous paper,36 we consider the dynamics of the

system consisting of n pendula mounted on the movable beam.

The pendula are excited by the external torques which are line-

arly dependent on the angular velocities of the pendulums. As

the result of such excitation, each pendulum rotates around its

axis of rotation. It has been shown that both complete and

phase synchronizations of the rotating pendulums are possible.

We have derived the approximate analytical conditions for

both types of synchronizations and equations which allow the

estimation of the phase differences between the pendulums.

Contrary to the case of the oscillatory pendulums,38–40 phase

synchronization is not limited to three and five clusters’ config-

urations. We have considered the case of slowly rotating pendu-

lums and the influence of the gravity on their motion. Our

results have been compared to those of Blekhman.26

The dynamics of the similar system in which one pendu-

lum rotates counter-clockwise, i.e., has a positive angular

velocity, while the remaining pendula rotate clockwise with

negative angular velocity has been studied in Ref. 37. We

NOMENCLATURE

A¼Amplitude of the parametric excitation

x¼Frequency of the parametric excitation

G¼Earth gravity

ni1; ni2¼Coordinates of pendulums’ centres in their

local systems

kis¼Spring stiffness coefficient

kic¼Damping coefficient

mi1, Ji1, mi2, Ji2¼Masses and moments of inertia of the Ii

and IIi pendula

ui1, ui2¼Angles of pendula position

T, V¼Kinetic and potential energies of the

system

1054-1500/2012/22(4)/047503/7/$30.00 VC 2012 American Institute of Physics22, 047503-1
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have considered two cases: (i) pendula rotate in the horizontal

plane, i.e., the gravity has no influence on their motion, (ii)

pendula rotate in the vertical plane and their weight of causes

the unevenness of their rotation, i.e., each pendulum slows

down when the center of its mass goes up and accelerates

when the center of its mass goes down. We show that in such

systems, despite opposite directions of rotation different types

of synchronization occur.

In this paper, we consider the dynamics of the set of two

pairs of double pendula mounted on the platform which

oscillates vertically. Using a custom designed experimental

rig, we identify different types of synchronous motion of

rotating pendula, i.e., we observe the synchronization of pen-

dula rotating both in the same and opposite directions. The

rotating pendula can be 1:1 and 1:2 synchronized with the

oscillations of the platform. The existence of experimentally

observed synchronous states is confirmed in numerical simu-

lations. We show the extreme sensibility of the synchronized

state on the system parameters and initial conditions.

The paper is organized as follows. In Sec. II, we describe

the considered model of the coupled rotating pendulums and

the design of the experimental rig. The examples of the con-

figurations of the synchronized pendulums are given in

Sec. III. Finally, we summarize our results in Sec. IV.

II. THE MODEL

We consider the system of two pairs of double pendula

arranged into a cross structure as shown in Figures 1(a)–1(c).

The lower pendula’s bobs (marked there with symbols II1,

II2, II3, II4) can only rotate around their horizontal axes (at

the points C1, C2, C3, C4. The upper bobs (I1, I2, I3, I4) can

only oscillate around the horizontal axes marked by

A1;A2;A3, and A4 and located on the base (III—in Figures

1(a) and 1(b)). The base, mounted on the shaker, is excited

in the vertical direction by a kinematic excitation,

y ¼ A cos xt.
To describe the dynamics of the system, we introduced

the following generalized coordinates:

q¼½u11ðtÞ;u12ðtÞ;u21ðtÞ;u22ðtÞ;u31ðtÞ;u32ðtÞ;u41ðtÞ;u42ðtÞ� ;
(1)

and generalized velocities

_q ¼ ½ _u11ðtÞ; _u12ðtÞ; _u21ðtÞ; _u22ðtÞ; _u31ðtÞ; _u32ðtÞ;
_u41ðtÞ; _u42ðtÞ� : (2)

The position of the mass center of the ith upper pendula (Ii

in Figure 1(c)) is given by

xi1 ¼ ni1 cos ðui1Þ ; yi1 ¼ Acos ðxtÞþ ni1 sinðui1Þ ; i¼ 1 :::4

(3)

and the position of mass center of the ith lower pendula (IIi

in Figure 1(c)) by

xi2¼ ni1 cosðui1Þ�ni2 sinðui2Þ ;
yi2¼AcosðxtÞþni1 sinðui1Þþni2 cosðui2Þ ; i¼ 1 :::4 : (4)

The velocities of the mass center of upper and lower pendula

are read, respectively, as

vxi1 ¼ �ni1 _ui1 sin ðui1Þ ;
vyi1 ¼ �Ax sin ðxtÞ þ ni1 _ui1 cos ðui1Þ ; i ¼ 1 ::: 4 (5)

and

vxi2 ¼�ni1 _ui1 sinðui1Þ� ni2 _ui2 cosðui2Þ ; i¼ 1 :::4;

vyi2 ¼�Axsin ðxtÞþ ni1 _u1cosðui1Þ� ni2 _ui2 sinðui2Þ ;
i¼ 1 :::4 : (6)

Kinetic energy and potential energy of the whole system

described as

2T ¼
X4

i¼1

mi1ð Ax sinðxtÞ � ni1 cosðui1Þ _ui1ð Þ2
h

þ n2
i1 sin2ðui1Þ _u2

i1

�
þ mi2ððni2 sinðui2Þ _ui2

� ni1 cosðui1Þ _ui1 þ Ax sinðxtÞÞ2

þ ni1 sinðui1Þ _ui1 þ ni2 cosðui2Þ _ui2ð Þ2Þ

þ Ji1 _u2
i1 þ Ji2 _u2

i2

i
(7)

and

V ¼
X4

i¼1

1

2
kisg

2
i1 sin2ðui1Þ �mi1gðA cosðxtÞ

�
þ ni1 sinðui1ÞÞ

�mi2gðA cosðxtÞ þ ni1sinðui1Þ þ ni2 cosðui2ÞÞ
�
: ð8Þ

Assuming the dissipated energy in the form of Rayleigh

function,

R ¼ 1

6

X4

i¼1

kicg
3
i2 _u2

i2 ; (9)

one can derive the equations of motion of the system (using

Lagrange’s method)

ðJi2 þ mi2n
2
i2Þ€ui2 þ mi2ni2

�
Ax2cosðxtÞ þ g

�
sinðui2Þ

þ mi2ni2

�
ni1

�
cosðui1 � ui2Þ _u2

i1 þ sinðui1 � ui2Þ€ui1

��

þ 1

3
kicg

3
i2 _ui2 ¼ 0 ; i ¼ 1 ::: 4 ;

�
Ji1 þ ðmi1 þ mi2Þn2

i1

�
€ui1 þ

1

2
g2

i1kis sinð2ui1Þ

þ mi2ni1

�
ni2

�
sinðui1 � ui2Þ€ui2 � cosðui1 � ui2Þ _u2

i2

��

� ðmi1 þ mi2Þni1 cosðui1Þ
�

Ax2 cosðxtÞ þ g
�
¼ 0 ;

i ¼ 1 ::: 4 : ð10Þ

In our experiments, we use the rig with the set of two pairs

of double pendulums shown in Figure 2. The vertical oscilla-

tions can be seen here as a blurry contour of the rig frame.

Before proceeding to numerical simulations and experi-

ments concerning the motion of the pendula under vertical

(parametric) excitation, some basic measurements of the

047503-2 Strzalko et al. Chaos 22, 047503 (2012)
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individual pendulums have been carried out. The system pa-

rameters have been identified to be: ni1 ¼ 0:153 [m], ni2 ¼
0:096 [m], gi1 ¼ 0:315 [m], gi2 ¼ 0:145 [m], mi1 ¼ 0:4 [kg],

mi2 ¼ 0:0166 [kg]. The estimated values of the stiffness coef-

ficients kis are k1s ¼ 4664 [N/m], k2s ¼ 4115 [N/m], k3s ¼
4535 [N/m], k4s ¼ 4325 [N/m]. (We measure the springs’

deflections under several given weights to calculate an aver-

aged value of kis.) The values of the damping coefficients kic

have been determined on the basis of the measured time inter-

val in which the oscillations decay. The obtained values are

as follows: k1c ¼ 0:070 [kg/ms], k2c ¼ 0:035 [kg/ms], k3c ¼
0:035 [kg/ms], k4c ¼ 0:050 [kg/ms]. Our experimental system

consists of four nonidentical subsystems (two pairs of double

pendula). The pendula have the same lengths and masses but

are suspended on springs with different stiffness and damping

coefficients.

In designing the rig, we deliberately chosen nonidentical

spring and damping elements (the differences in stiffness

and damping coefficients are about 10% between the maxi-

mum and the minimum values). Our goal has been to check

if the theoretically predicted synchronization of the noni-

dentical pendula36,37 can be observed experimentally.

III. RESULTS AND DISCUSSION

In our experiment, the rig has been mounted on the

shaker LDS V780 Low Force Shaker (basic data are as fol-

lows: sine force peak 5120 [N]; max random force (rms)

FIG. 1. Model of a set of (n¼ 4) pendula located at an

oscillating platform (a) general view, ((b) and (c))

details describing system parameters.

047503-3 Strzalko et al. Chaos 22, 047503 (2012)
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4230 [N]; max acceleration sine peak gn¼ 111; system

velocity sine peak 1.9 [m/s]; displacement pk-pk gn ¼ 25:4
[mm]; moving element mass 4.7 [kg]). The shaker introduces

practically kinematic periodic excitation A cos xt, where A
and x are the amplitude and the frequency of the excitation,

respectively. At initial moments the lower pendula have

been assumed to be in the upper position, i.e., u2ð1�4Þ
¼ p 6 p=36. We fix the value of the excitation amplitude

A ¼ 0:0160:005 [m] and consider excitation frequency x as

a control parameter.

For a qualitative classification of the pendula behavior,

we use the following nomenclature; the pendula which rotate

clockwise or counter-clockwise are marked by þ1 and �1,

respectively, the pendula which are at rest are marked by 0.

The angular velocity of the pendulum is given as follows:

u2i ¼ xtþ b sinðxtÞ for the case of clockwise rotation and

u2i ¼ �xtþ b sinð�xtÞ, where the harmonic component

describes the influence of the gravity on the motion of pen-

dula (b is constant for all pendula as their masses are the

same).36,37

The most interesting case is when all four pendula

rotate. In this case, one can observe various types of pendula

synchronization. Typical examples of different types of syn-

chronization are shown in Figures 3(a)–3(d), where yellow

arrows indicate the direction of rotation. Figure 3(a) presents

the case when all pendula rotate in the same direction, i.e.,

ðþ1;þ1;þ1;þ1Þ. The pendula’s displacements fulfill the

relation u2i � u2j ¼ 0, where j ¼ 1; 2; 3; 4; j 6¼ i. In Figure

3(b), one observes the synchronous motion when 3 pendula

(II1; II2, and II3) rotate with the same direction, while the

fourth in the opposite one—(þ1,þ1,þ1,�1). In this case,

u2ð1�3Þ þ u24 ¼ 0 and pendulum II4 is in the state of mirror

synchronization37 with the cluster of synchronized pendula

II1; II2, and II3. In Figure 3(c), we present the variation of the

case (þ1,þ1,þ1,�1) when three pendula rotate in the same

rotation velocity while the fourth one rotates twice slower.

Pendula II1; II2, and II3 are synchronized. The case when 2

FIG. 3. Different types of experimentally

observed synchronous states; (a) pendula

rotate clockwise ðþ1;þ1;þ1;þ1Þ, x ¼
20:00 [rad/s], (b) 3 pendula rotate clock-

wise while the fourth one counterclock-

wise ðþ1;þ1;þ1;�1Þ, x¼24:00 [rad/s],

(c) 3 pendula rotate clockwise (x¼29:00

[rad/s]) while the fourth one counterclo-

ckwise ðþ1;þ1;þ1;�1Þ with twice slo-

wer angular velocity, (d) 2 pendula rotate

clockwise and 2 counterclockwise ðþ1;
þ1;�1;�1Þ, x¼35:00 [rad/s].

FIG. 2. Experimental rig.

047503-4 Strzalko et al. Chaos 22, 047503 (2012)
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pendula rotate clockwise and two counterclockwise is pre-

sented in Figure 3(d). The pairs of the pendula which rotate

in the same directions are synchronized and are in the state

of cluster antiphase synchonization,37 i.e., u2ð1;2Þ þ u2ð3;4Þ ¼
p þ2b sinðxtÞ. In photo of Figures 3(a)–3(d), the camera has

worked with shutter speed fixed and the flash fired at the sec-

ond curtain, i.e., close to the moment when the shutter has

been about to close. In such conditions, the observed trace of

the pendula have created a blurry image with each pendulum

highlighted with the flash. The highlighted image has

appeared close to the end of exposure, and has allowed

determination of the direction of the registered motion and

rotating velocity ratio.

Experimental results can be compared with the numeri-

cal results obtained by the direct integration of Eqs. (4). Due

to the lack of precise data from the experiments about the ini-

tial values of the angular velocity for the pendula (a), there

exists a difficulty in direct comparison of both experimental a

simulation data. In our calculations, we fixed the initial con-

ditions u2i ¼ p; _u2i ¼ 0;u1i ¼ p=2; _u1i ¼ 0 and observe the

type of behavior which a particular pendulum exhibits for

given excitation parameter A and x. Numerical results are

shown in Figures 4(a)–4(e). In Figures 4(a)–4(d), red and

navy blue colors indicate, respectively, clockwise and coun-

terclockwise rotation, while the yellow one indicates that the

pendulum is at rest. In the largest domain of the considered

plane, pendula are in rest. Rotations is possible only in the

small subsets indicated in blue and red so to keep pendula

rotating both the amplitude A and frequency x of the excita-

tion should be chosen very accurately (practically to keep

FIG. 4. Different types of pendula’s be-

havior on the A-x plane (a) pendulum

II1, (b) pendulum II2, (c) pendulum II3,

(d) pendulum II4, red—pendulum rotates

clockwise, navy blue—pendulum rotates

counterclockwise, yellow—pendulum at

rest, (e) combined synchronous states of

4 pendula.
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pendula rotating one has to adopt appropriate controlling pro-

cedure). Figure 4(e) summarizes the results obtained for the

particular pendula and shows how all pendula behave. Notice

that the type of pendula synchronization very strongly

depends on the excitation parameters. Very small changes of

these parameters (smaller than the accuracy of our measure-

ment) can lead to the change of synchronization configura-

tion. The structure of the basins of different synchronous

configurations is similar to that obtained for the result of the

dice throw41,42 and explains the difficulty in the predictability

of the synchronous structure.

IV. CONCLUSIONS

In the considered system consisting of a set of four

double pendula mounted on the platform which can

oscillate vertically, one can observe the synchronous states

of both clockwise and counter-clockwise rotating pendula.

In the experiment using simple mechanical rig, we con-

firmed the existence of different types of synchronous

configurations of rotating nonidentical pendula and the

extreme sensitivity of the synchronized state on the system

parameters and the initial conditions. This sensibility

introduces pseudo-randomness to the predictability of the

synchronous state. Rotating pendula can be 1:1 and 1:2

synchronized with the oscillations of the platform. The

existence of experimentally observed synchronous states is

confirmed in the numerical simulations. Generally, syn-

chronous rotation of pendula is robust as it exists for the

wide range of excitation parameters, but particular syn-

chronous states are very sensitive to the changes of system

parameters. In practical application to the extraction energy

from the sea waves, one has to apply a feedback control

mechanism. This mechanism should be capable of sensing

the roughness of the waves in the sea and keep the pendula

rotating permanently in the desired synchronous configura-

tion, therefore, providing energy for uninterrupted power

generation.
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