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Different types of chimera states: An interplay between spatial and dynamical chaos
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We discuss the occurrence of chimera states in networks of nonlocally coupled bistable oscillators, in which
individual subsystems are characterized by the coexistence of regular (a fixed point or a limit cycle) and chaotic
attractors. By analyzing the dependence of the network dynamics on the range and strength of coupling, we
identify parameter regions for various chimera states, which are characterized by different types of chaotic
behavior at the incoherent interval. Besides previously observed chimeras with space-temporal and spatial
chaos in the incoherent intervals we observe another type of chimera state in which the incoherent interval is
characterized by a central interval with standard space-temporal chaos and two narrow side intervals with spatial
chaos. Our findings for the maps as well as for time-continuous van der Pol–Duffing’s oscillators reveal that
this type of chimera states represents characteristic spatiotemporal patterns at the transition from coherence to
incoherence.
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The coexistence of coherent and incoherent structures in
networks of coupled oscillators, known as the chimera states,
is a widely occuring phenomenon in nature. First observed
by Kuramoto [1], it was later studied by many scientists and
today is one of the fastest growing branches of dynamical
systems and networks theory. The works on chimeras relate
to a variety of models like phase oscillators [2–7] (for which
they were originally found), chemical oscillators [8,9], neuron
models [10], planar oscillators [11], and many other different
types of networks [12–24]. Chimera states are well known for
nonlocally coupled systems, but recently they also have been
found in feedback-delayed oscillators [25–27] and in globally
coupled networks [18,19]. The coherence-incoherence transi-
tions [28,29], spatiotemporal patterns [31], chaotic transients
[32], and spectral properties [33] are only a few of recent
studies on chimera states. Interesting studies about different
chimera variants can be found in Refs. [27,34–37] (e.g.,
multiclustered chimera states and their cascades [23,34],
virtual chimera states [27], controlling chimeras [21,22], and
two-dimensional chimera states [5,16,17,24,36]). In Ref. [38] a
real physical experiment on chimeras in mechanical oscillator
networks is presented.

Depending on the dynamics of the oscillators at incoherent
intervals two types of chimera states have been identified. In
the incoherent intervals of the first type (chimera type I) one
observes space-temporal chaos characterized by hyperchaotic
behavior with many positive Lyapunov exponents [33]. This
type of chimera state is widely observed for networks of
continuous time nodes (given by differential equations, e.g.,
complex Ginzburg-Landau equations or Kuramoto model
[1–8]). In the second type (chimera type II) only spatial chaos
is observed in the chimera’s incoherent interval such that the
temporal dynamics is very simple, in most cases periodic.
This type has been observed in networks of discrete time
nodes (maps) [28–30] but recently also for time-continuos
Stuart-Landau oscillators [37].

Our paper gives the link between these two types of
chimera states. We identify another chimera state (chimera
type III) in which the incoherent interval is characterized

by a central interval with standard space-temporal chaos and
two narrow side intervals with spatial chaos. Therefore, we
have obtained a hybrid chimera state, where the behavior at
the incoherent interval splits up into two intervals with very
different behaviors, namely space-temporal chaos and spatial
chaos. In some sense, this could be considered as the second
hierarchical level of the chimera state (the chimera’s incoherent
interval is divided into two smaller ones with incongruent
behavior inside).

In this paper we study the interplay between coherent
and incoherent dynamics in networks of nonlocally coupled
oscillators. Contrary to most previous studies, where networks
with monostable (one attractor) units have been considered, we
focus on networks of the oscillators with coexisting attractors.
We consider bistable units with coexisting chaotic and regular
attractors. Such an approach can extend our knowledge about
the chimera states phenomenon.

We start with coupled bistable maps
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where xi are real dynamic variables (i = 1, . . . ,N and index i

is periodic mode N ), t denotes discrete time, d is the coupling
parameter, 2P is the number of neighbors in both directions
coupled with the ith map, and function f describes a one-
dimensional system. We choose f as the piecewise linear map

f (x) =
⎧⎨
⎩

p1x + (p1/l − 1) : x ∈ [−1, − 1/l)
lx : x ∈ [−1/l,1/l)
p2x − (p2/l − 1) : x ∈ [1/l,1]

(2)

where p1,l,p2 are the slopes of linear functions described in
intervals [−1, − 1/l),[−1/l,1/l), and [1/l,1] respectively.
f is a bistable map for certain parameters, namely −1 < p1 <

0,l > 1,p2 < −1, when the stable fixed point coexists with
the chaotic attractor. Previously, this kind of coupled maps
has been studied in Ref. [39], where the symmetrical case
(p1 = p2) when both coexisting attractors are chaotic has been
considered. In our studies we fixed p1 and p2, essentially
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FIG. 1. (Color online) Regions of various behaviors for system
(1) in the (r,d) parameter space. Each color (grayscale) and signature
refers to a different state of the system, with complete synchronization
marked as the hatched region. The k = 1,2,3, . . . numbers denote
the regions of different chimera’s heads, which are separated by the
dotted lines. The snapshots of typical chimera states of the second type
are shown in the insets. Parameters: l = 1.5,p1 = −0.5,p2 = −2.4,

N = 100.

different choosing the parameters as p1 = −0.5,p2 = −2.4,

and l = 1.5, and for such parameters there exist (i) equilibrium
x0 = −8/9 with its basin of attraction as interval [−1,0) and
(ii) chaotic attractor A = [0.2,1] with its basin of attraction as
interval (0,1].

The results of direct numerical simulations of Eqs. (1)
and (2) in the two-parameter plane of the coupling radius
r = P/N and coupling strength d are presented in Fig. 1.
When r and d are sufficiently large, all maps synchronize
on one of two coexisting attractors. It can be a stable fixed
point x0 (there is no dynamics) or chaotic attractor A when
complete chaotic synchronization of the system occurs. The
region of complete synchronization is marked as hatched. On
the other hand, if the coupling parameter is small enough, then
for any coupling radius we obtain spatial chaos [28,40,41].
Even though individual oscillators are coupled in the network
with appropriate choice of initial conditions they get attracted
directly to those of two attractors which basins they initially
start from. Therefore, the number of coexisting network
attractors is exponentially large, growing with the system’s
size N (in this case equal to 2N ). Any coherent, self-organized
structures do not exist in the system (except of these given
by stable fixed point x0). The chimera states are observed for
intermediate values of the coupling coefficient d and these
regions are denoted by “Chimeras type I–III.” The colors
(shades of gray) denote different chimera types.

The typical bifurcation scenario of the transition between
different chimera states is presented in Fig. 2, where we fix the
coupling radius r = 0.25 and increase the coupling strength d

along the vertical line with triangles in Fig. 1. Figures 2(a)–2(f)
refer to the points marked as black triangles in Fig. 1 [with
panel (a) d = 0.25 referring to the lower triangle and panel
(f) d = 0.47 to the top one]. In the left column the snapshots
after transient time t = 20000 are shown, while in the right

-1

1

xi

d=0.47(f)

-1

1

xi

d=0.4(e)

-1

1

xi

d=0.34(d)

-1

1

xi

d=0.307

ε2ε1

(c)

-1

1

xi

d=0.295

ε1 ε2

(b)

1

-1
1 100

-1

1

i

xi

d=0.25

1 100i

(a)

20020

tim
e

20001

tim
e

20020

20001

tim
e

20020

20001

tim
e

20020

20001

tim
e

20020

20001

tim
e

20020

20001

xi

FIG. 2. (Color online) Typical bifurcation scenario for network
(1,2) with fixed coupling radius r = 0.25 (black triangles in Fig. 1).
For each value of the coupling strength d (increasing from the
bottom to the top, d = 0.25,0.295,0.307,0.34,0.4,0.47 respectively)
the snapshots (left column) and space-time plots (right column) are
shown. Other parameters as in Fig. 1.

column space-time plots of the next 20 iterations are presented.
Each panel in Fig. 2 has been made for different coupling
parameters, starting with randomly chosen initial conditions.

Figure 1 has been calculated in the following way: We
start at point (r,d) inside the region of spatial chaos and
increase d. Each point inside this region has been iterated
for 100 randomly chosen initial conditions. Point (r,d) with
the smallest d for which we find at least one chimera state
has been assumed as the boundary point between spatial
chaos and chimera type III regions. Over this boundary
the calculations have been performed using the continuation
method (calculations for each new value of d have started with
the chimera state observed for previous d value). The lower
boundaries of the chimera type I and II regions have been
determined by the lowest values of d for which respectively
chimera type III transform into chimera type I or chimera type
I into chimera type II. The d values for which none of chimera
types survive determine the upper blank region.

First, when the value of coupling equals d = 0.25, spatial
chaos is observed [Fig. 2(a)]: The oscillators are placed close to
the attractors from which they have started. This network state
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radically changes for d = 0.295 [Fig. 2(b)] when chimera type
III appear. Three essentially different (incongruent) structures
are created in the network: one coherent and two incoherent
ones. The coherent one is the lower cluster, where the maps
stay close to fixed point x0. The incoherent structure is in the
upper middle part of the snaphot, where the oscillators are
desynchronized and temporal chaos occurs. There is also the
second incoherent structure in between these two, marked as
shaded yellow (light gray) stripes ε1 and ε2. In the state, we
observe spatial chaos combined with temporal one. Indeed, the
oscillators are distributed between lower and upper parts in a
random way (the distribution is given by the initial conditions)
such that these above behave chaotically in time whereas
those which are below are “almost not moving.” It has to
be emphasized that not every combination of maps (network
units) in the incoherent part can be realized by the appropriate
choice of initial conditions. Usually, if we exchange the initial
condition in the region for a single oscillator only (with other
initial conditions unchanged), the whole structure is destroyed
and the system transforms into a different chimera state.

With further increase of coupling strength d, the spatial
chaos stripes become narrower [Fig. 2(c)] and at some
bifurcation value, they shrink and disappear. Chimera type
I like the ones shown in Fig. 2(d) are born. Both the lower
cluster and the upper incoherent part with dynamical chaos
have survived but the amplitude of the chaotic oscillations of
the upper part becomes smaller. In addition, both structures
coherent and incoherent are connected with a smooth (almost
linear) profile, as one may observe in Figs. 2(d) and 2(e) at
the place of the disappearing yellow (light gray) stripes. The
transitional zone between coherence and incoherence becomes
wider with further increase of d, as illustrated in Figs. 2(d) and
2(e). Finally, when the boundary of this parameter region is
reached, chimeras type II appear with spatial chaos at the
incoherence region. Indeed, as one can see in Fig. 2(f), the
maps (network units) are “randomly” located in space at two
branches (upper and lower curves on the snapshot) and with
next iterations each unit jumps from one branch to another and
backwards. For various initial conditions exponentially many
(with N ) combinations of these locations can be obtained,
including a peculiar case when all the maps are placed at one
of the branches only (and then all together periodically jump
between two branches).

With further increase of the coupling coefficient d, we leave
the region of chimera states and the whole network dynamics
ends at one of the two attractors of the piecewise linear map,
Eq. (2). This parameter area is left blank in Fig. 1. When the
attractor for all the maps is chaotic, it is known that chimeras
type II can arise for nonlocally coupled unimodal maps in
appropriate parameter regions [28,29].

Regions for chimera states in Fig. 1 are divided by the
dotted lines which determine the additional subregions signed
by k = 1,2,3 numbers. These numbers refer to the number of
the so-called chimeras heads (i.e., the regions of chaoticity)
[4]; characteristic examples are illustrated in the insets.
Further decrease of r yields additional higher order regions of
multiheaded chimera states following the head-adding cascade
k = 4,5, . . . (not shown in Fig. 1).

To investigate the multiplicity of the chimera states, we
analyzed all possible structures obtained from many random
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FIG. 3. Multiplicity and uniqueness of chimera states for network
(1,2) with fixed coupling radius r = 0.25. Parameter n denotes a
number of maps attracted to the lower branch of chimera, which can
change widely for d < d0. For d � d0 states are unique. N = 500
units have been considered. Other parameters as in Fig. 1.

initial conditions at the transition when chimeras type III are
born. The results are presented in Fig. 3. Here n denotes
the number of units attracted to the lower cluster (units in
equilibria). As shown in Fig. 3 n can take various values
as d ∈ [0.29,d0) and then many different chimera type III
exist. With the coupling increase the multiplicity declines and
eventually for d > d0 a unique chimeras type I is observed (for
all larger coupling values where it exists). To our surprise, the
multiplicity bifurcation point d0 seems to be independent of
the coupling radius r and in our numerical simulations equals
d0

∼= 0.334.
To test if the bifurcation transitions between different types

of the chimera states are a universal scenario, we have also
investigated nonlocally coupled networks of bistable units with
different local dynamics. Figure 4 illustrates the bifurcation
transition for nonlocally coupled piecewise logistic function
f :

f (x) =
{
a1x(1 + x) : x ∈ [−1,0)
a2x(1 − x) : x ∈ [0,1] . (3)

The bifurcation parameters a1,a2 are fixed at the values a1 =
2.5 (equilibrium) and a2 = 3.8 (chaotic attractor). Then for
x ∈ (0,1] we have a chaotic logistic map and the chimera state
appearance in this case has been derived in Refs. [28,29]. For
x ∈ [−1,0] the dynamics of f is trivial given by a stable fixed
point.

As the second example we consider the nonlocally coupled
van der Pol–Duffing oscillators with external excitation:

ẋi = yi + d

2P

i+P∑
j=i−P

[xj − xi]

ẏi = α
(
1 − x2

i

)
yi − xi

3+F sin ωt

+ d

2P

i+P∑
j=i−P

[yj − yi] (4)

where α,F, and ω are constant. As shown in Ref. [42],
individual dynamics of the oscillators in system (4) is very rich;
for various parameter values it can be mono-, bi- or multistable
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FIG. 4. (Color online) Snapshots (left column) and space-time
plots (right column) for Eqs. (1) and (3) of coupled piecewise logistic
maps. Coupling strength increases from the bottom to the top, d =
0.1,0.2,0.29,0.3,0.32,0.4 respectively. Parameters: a1 = 2.5,a2 =
3.8,N = 100, r = 0.1. Observed states correspond to dynamics of
Eqs. (1) and (2). In upper structures in chimera states [Figs. 4(c)–4(e)]
units can oscillate periodically with different periods (red [dark gray]
dots on the snapshots) or chaotically (green [light gray] dots on the
snapshots).

with different types of regular and chaotic attractors. In our
simulations we fix parameters α = 0.2,F = 1, and ω = 0.94,
for which the oscillators are bistable, having one periodic
and one chaotic attractor. It should be noted that there are
two coupling components in Eq. (4), one for the position
coordinates [the first equation in Eq. (4)] and the second for
the velocity [the second equation in Eq. (4)].

The dynamics of system (5) is shown in Fig. 5. For the small
coupling there are three periodic and one chaotic attractors
[Fig. 5(a), right panel], and the network dynamics is developed
in the form of spatial chaos only [Fig. 5(a), left panel] such that
chimera states occur for larger d values. As one can observe
in Fig. 5(b), two levels of clusters are created (with periodic
dynamics) but there are also incoherent parts with chaotic
oscillations (an enlargement is shown in the inset). When the
coupling coefficient increases further [Fig. 5(c)], the branches
of periodic solutions remain, but chaotic dynamics transforms
into a quasiperiodic one. With further increase of d the irregular
behavior disappears and chimeras are not observed any more
[Fig. 5(d)].

2

0

-2

xi

3

1

-1

yi

(a)

2

0

-2

xi

3

1

-1

yi

(b)

2

0

-2

xi

3

1

-1

yi

(c)

1

2

0

-2
100

i

xi

-2 0

3

1

-1
2

xi

yi

(d)

d=0.005

d=0.02

d=0.025

d=0.03

FIG. 5. (Color online) Snapshots (left column) and Poincaré
maps (right column) of the oscillators of network (5). For each
subfigure (a)–(d) colors denoting oscillators on the snapshot refer to
the attractors shown on the map where the corresponding oscillators
are located. For periodic solutions (finite number of dots) period is
equal to number of dots on map multiplied by 2π/0.94 (period of the
external excitation). Parts of quasiperiodic and chaotic attractors in
panels (b) and (c) are enlarged in the insets. Parameters: N = 100,
r = 0.1.

In conclusion, we have identified a different type of chimera
states in networks with nonlocally coupled bistable systems.
This type of behavior is observed in a wide range of coupling
parameters and is characterized by the central interval with
standard space-temporal chaos and two narrow side intervals
with spatial chaos inside chimera’s incoherent interval. We
have found similar patterns for coupled maps (piecewise
linear and logistic) as well as for time-continuous systems.
This indicates a common, possibly universal phenomenon in
networks of very different nature due to the bistability of
individual oscillators. The studies of the dynamics of networks
of multistable units, in which new types of chimeras’ states
appear, can lead to better understanding of the transition
between coherence and incoherence in the systems of very
different nature.

This work has been supported by the Polish Na-
tional Science Centre, MAESTRO Program Project No
2013/08/A/ST8/00/780.
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I. Omelchenko, and E. Schöll, Nat. Phys. 8, 658 (2012).
[31] O. E. Omel’chenko, M. Wolfrum, and Y. L. Maistrenko, Phys.

Rev. E 81, 065201(R) (2010).
[32] M. Wolfrum and O. E. Omel’chenko, Phys. Rev. E 84,

015201(R) (2011).
[33] M. Wolfrum, O. E. Omel’chenko, S. Yanchuk, and Y. L.

Maistrenko, Chaos 21, 013112 (2011).
[34] I. Omelchenko, O. E. Omel’chenko, P. Hövel, and E. Schöll,
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