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a b s t r a c t

In this paper, investigations of a harmonically excited one-degree-of-freedom mechanical system having
an amplitude constraint are presented. The contact between the oscillated mass and the barrier is
modeled by Hertz's law with a non-linear damping as well as by Newton's law. The influence of the
frequency of excitation force on the system's behavior is studied in a wide range of the control parameter
by determining and analyzing the corresponding spectra of Lyapunov exponents. The dynamical
behaviors of two systems with impacts: a system with Hertz's undamped impacts and a system with
perfectly elastic hard impacts, which are equivalent in the sense of the same rate of impact energy
dissipation, are compared and strong qualitative and quantitative similarities are observed. As an
application example, a simple cantilever beam system with impacts is considered and the combined
effects of the nonlinearities due to beam deflection and impacts of Hertz's as well as Newton's types are
investigated.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The calculation of Lyapunov exponents is one of fundamental
elements in analysis of nonlinear dissipative systems with a finite
number of degrees of freedom. They are numerical characteristics
that allow for qualitative and quantitative evaluation of the system
dynamics. These quantities are strictly connected to such mea-
sures of chaos as the Kolmogorov entropy and dimension of
the dynamical system. The theoretical foundations for existence
and uniqueness of Lyapunov exponents have been presented by
Oseledec [1]. A spectrum of Lyapunov exponents characterizes the
medium expansion of a small subset in the phase space along the
trajectory. To identify the character of the system dynamics, it is
usually enough to know the sign of the largest Lyapunov exponent
—its non-positiveness renders the regularity of the system motion,
whereas its positiveness—proves the chaotic character of the
solution. The value of the largest Lyapunov exponent describes
the rate of the mean exponential convergence or divergence of
adjacent trajectories on the attractor.

The first method to calculate the whole spectrum of Lyapunov
exponents was presented independently by Benettin et al. [2]
and Shimada and Nagashima [3]. In the literature, there are two

classical approaches towards determination of Lyapunov expo-
nents for smooth systems with known equations of motion. In the
first one, (see, for instance, [4]), an evolution of infinitesimal
vectors of distortions in the trajectory under consideration is
described by means of linearization of the vector field. The second
approach (see, for example, [5]) consists in a substitution of the
continuous system by its discrete counterpart, for instance, by
applying Poincare maps, and a consideration of the linearization of
the discrete map. Some alternative methods proposed by Stefanski
(see, for instance, [6]) and Dabrowski (see, [7]) allow for determi-
nation of the largest Lyapunov exponent on the basis of the
synchronization phenomenon of pairs of identical systems and
the derivative dot product of perturbation vector, respectively.

Methods that enable estimation of Lyapunov exponents from
experimental time series, that is to say, in the case when the
system of differential equations describing the behavior of the
system is not available, are known as well. Their basis usually lies
in a reconstruction of the state space with the delay method,
introduced by Takens [8]. The first procedure of this kind for
calculation of the largest Lyapunov exponent was given by Wolf
et al. [9], whereas analogous algorithms for determination of
the whole spectrum of Lyapunov exponents can be found in
Parlitz [10], Sano and Sawada [11], and Yang and Wu [12].

In the literature, a few adaptations of classical methods for
determination of Lyapunov exponents to the case of piecewise
smooth systems can be found. Müller [13] (cf [14]) has shown that
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the conditions for transition of the system through the non-
smoothness have their counterparts for the linearized system,
due to which it is possible to determine Lyapunov exponents with
a classical method of the Benettin et al. type [2]. A similar
modification of the discrete method, based on the notion of local
Nordmark maps [15], has been presented by Jin et al. [16].
A different approach with a smaller range of applications limited
to piecewise linear systems, consists in an application of disconti-
nuity maps ([17,18]) instead of Poincare maps.

An important part of the dynamical systems is represented
by those systems whose motions take place in the presence
of impacting interactions between the masses of the system
(see [19,20]). The classic approach to study the collision process,
called stereomechanical model of a collision [21] or hard collision
model [22], uses the coefficient of restitution and the principle of
conservation of momentum, and allows to determine the velocity
of the bodies after the collision on the basis of knowledge of the
velocity of the bodies before the collision. Taking into account the
duration of the impact and the coefficient of restitution depending
on the velocity, leads to models which more accurately describe
the process of collision (see e.g. [23,24]). Such a process is similar
to the collision with the stop with a certain vulnerability, and is
called a soft collision model [22]. In this case, there is a choice of
stops modeling. They can be linear (e.g., models of vibroimpact
systems with clearance [25–28]) or nonlinear (e.g., Hertz's models
[21,29,30]), elastic or elastic-damping constructions. A compre-
hensive survey of the current knowledge about systems with
impacts has been made by Ibrahim [31].

The above-described methods of deriving Lyapunov exponents
have been applied to impact systems with rigid stops ([32–36]),
except for [37], in which Lyapunov exponents have been calculated
with the method of impact maps for piecewise linear one-degree-
of-freedom systems with one-sided impacts.

In this paper, we deal with a one-degree-of-freedom linear
oscillator with impacts modeled with soft nonlinear elastic struc-
tures (Hertz's contact model [21]), soft nonlinear elastic-damping
structures (Hertz's damp contact model [30]) as well as Newton's
law of contact, which besides its own interest, aims at represent-
ing an impacting cantilever beam system. The main objective is to
analyze qualitatively and quantitatively the influence of the
frequency of excitation force on the system's behavior in the case
of these three contacts models as well as to compare the resulting
responses. To this aim, we adapt the Müller's approach and
determine numerically the spectra of Lyapunov exponents. The
results obtained are consistent with the corresponding bifurcation
diagrams.

The presented study shows that the knowledge of Lyapunov
exponents enables more detailed analysis of the system's behavior
in comparison to other tools, e.g., Poincare maps or bifurcation
diagrams. In particular, it allows to identify some phenomena
which have not been reported on the basis of bifurcation diagrams,
like some periodic orbits not identified in the study by Pust and
Peterka [30]. Furthermore, we show that Lyapunov exponents can
provide a tool for not only qualitative (cf. [29]) but also quantita-
tive comparison of different systems with impacts. The presented
comparison of dynamical behaviors of a system with Hertz type
undamped collisions of relatively small values of stiffness and a
system with perfectly elastic hard collisions revealed their good
qualitative and quantitative agreement. This agreement manifests
itself in the appearance, for almost the same values of the
excitation force, of the chaotic motions with almost identical
values of the Lyapunov exponents corresponding to both the
collisions models, as well as in the existence, in a wide range of
the excitation force, of periodic motions with impacts, for which
the corresponding Lyapunov exponents are very close to each
other. In particular, this is the case when the two systems begin to

come into collisions with low velocity impacts, causing instabil-
ities of grazing-type.

From the mechanical engineering point of view, our results apply
to a simple cantilever beam system with impacts, which is com-
monly used as an element of engineering design. However, if the
beams are parts of a larger system, significant errors in the
dynamical responses can result from neglecting even small non-
linearities. The cumulative effect of the nonlinearity associated with
the beam deflection and the nonlinearity due to impact model with
clearance and linear spring was examined by Emans et al. [38] and
Lin et al. [39]. We extend these studies to two other impact models.
A comparison of dynamic responses of simple linear and nonlinear
beam systems with impacts of Hertz's and Newton's type revealed
their qualitative differences for physically realistic parameters.

This paper is organized as follows. Mathematical models of the
considered system are introduced in Section 2. In Sections 3 and 4,
the classical method for Lyapunov's exponents determination as
well as its modification for systems with singularities are briefly
described. Analysis of a harmonically excited one-degree-of-free-
dom impact oscillator with two Hertz's models of contact carried
out with the help of the corresponding spectra of Lyapunov's
exponents as well as a comparison of dynamics of a system with
perfectly elastic hard impacts and an equivalent, in the sense of
the same rate of impact energy dissipation, system with Hertz's
impacts, are presented in Section 5. In Section 6, the cumulative
effect of different type nonlinearities on cantilever beam responses
is investigated. The conclusions are formulated in Section 7.

2. Mathematical model of the system

The system under consideration consists of a linear oscillator
with mass m, coefficient of viscous damping c and spring stiffness
coefficients k and ke, presented in Fig. 1. The oscillator can be
under either external kinematic excitation (Fig. 1a) or external
forcing (Fig. 1b). In the first case the upper end of the spring ke
moves harmonically with the assigned amplitude a and frequency
ω. In the second case, the harmonic force of the assigned
amplitude F and frequency ω acts on the oscillator. When the
oscillators are in their static equilibrium positions, the distance
between their impacting surfaces and the unmovable fender is ρ.
The motion of the oscillators around their static equilibrium
positions is described by coordinate x.

The equations of impactless motion of the above-described
systems are as follows:

� for the oscillator shown in Fig. 1a

m
d2x
dt2

þc
dx
dt

þðkþkeÞx¼ kea cos ωt; ð1aÞ

Fig. 1. Impacting oscillators with two types of external excitation.
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� for the oscillator shown in Fig. 1b

m
d2x
dt2

þc
dx
dt

þkx¼ F cos ωt: ð1bÞ

Dividing both sides of Eq. (1a) by (kþke)a and introducing
dimensionless time τ¼αt, one obtains this equation in the dimen-
sionless form:

X″þ2bX0 þX ¼ ξ cos ητ; ð2aÞ

where α¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþkeÞ=m

p
is the frequency of free vibrations of the

undamped system, b¼ c=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþkeÞm

p
Þ—dimensionless damping,

related to the critical one, ξ¼ ke=ðkþkeÞ—relation between the
stiffness coefficients, η¼ ω=α—dimensionless frequency of forcing,
X ¼ x=a—dimensionless displacement related to the amplitude of
kinematic forcing and X0 denotes the derivative dX=dτ. The
dimensionless distance between the oscillator and the fenders
r¼ρ/a.

Dividing both sides of Eq. (1b) by F and introducing dimension-
less time τ¼αt, yields this equation in the dimensionless form:

X″þ2bX0 þX ¼ cos ητ; ð2bÞ
where α¼

ffiffiffiffiffiffiffiffiffi
k=m

p
, b¼ c=ð2

ffiffiffiffiffiffiffi
km

p
Þ, η¼ω=α, X ¼ x=xst—dimensionless

displacement related to the static displacement xst ¼ F=k. The
dimensionless distance r¼ ρ=xst. After these transformations, both
the considered systems can be shown in dimensionless form
presented in Fig. 2.

For appropriately selected parameters of the system, there is a
possibility of contact of the mass with the stop, i.e. deflection of
the mass of ρ (Fig. 1) or r (Fig. 2). In this paper, a continuation of
the research on the dynamic of the systems with soft stops with
nonlinear characteristics (see [29,30]) is conducted in the case of
two special nonlinear contact models. The equations describing
the motion of the system are then supplemented with the
appropriate collision force.

2.1. Hertz's contact model

The most popular Hertz's model of contact is the non-linear
elastic model in which the collision force Fρ is of the form:

Fρ ¼ 0 xoρ;

Fρ ¼ kh x�ρð Þ3=2 xZρ;
ð3aÞ

where kh is the ratio of the stiffness of the surface, dependent on
the elastic properties and geometry of the colliding bodies. A rich

source of information on the stiffness coefficient kh is, for example,
the monograph by Goldsmith [21].

Let us introduce the dimensionless variables: kH ¼ ðkh
ffiffiffi
a

p Þ=
ðkþkeÞ for the system (1a), and kH ¼ ðkh

ffiffiffiffiffiffi
xst

p Þ=k for the system
(1b). Then (3a) takes the following dimensionless form:

Fr ¼ 0; Xor;

Fr ¼ kH X�rð Þ3=2 XZr:
ð3bÞ

2.2. Hertz's damp contact model

As impacts in real systems are always accompanied with loss of
energy, the damping bh has to be included in corresponding
mathematical models. There are various Hertz-type laws with
nonlinear damping which have been studied in the literature (see,
e.g., [30,31,40,41]). In the sequel, we will consider the following
model:

Fρ ¼ 0 xoρ;

Fρ ¼ kh x�ρð Þ3=2 1þbh _xð Þ xZρ;
ð4aÞ

which has been discussed by Pust and Peterka [30].
Introducing dimensionless variables: kH ¼ ðkh

ffiffiffi
a

p Þ=ðkþkeÞ, bH ¼
bhaα for the system (1a), and kH ¼ ðkh

ffiffiffiffiffiffi
xst

p Þ=k, bH ¼ bhxstα for the
system (1b) we obtain the following dimensionless counterparts of
(4a):

Fr ¼ 0 Xor;

Fr ¼ kH X�rð Þ3=2 1þbHX
0� �

XZr; ð4bÞ

2.3. Dimensionless systems of equations of the first order

The dynamics of systems described by the second order
differential equations can be reduced to the analysis of the systems
of the first order differential equations:

dxi
dt

¼ f iðt; x1;…; xnÞ; i¼ 1;…; n: ð5Þ

The systems of differential equations corresponding to the Eqs.
(2a) and (2b), respectively, have the following forms:

_x1 ¼ x2
_x2 ¼ ξ cos ητ�2bx2�x1�Fr ; ð6aÞ
and

_x1 ¼ x2
_x2 ¼ cos ητ�2bx2�x1�Fr ; ð6bÞ
where Fr denotes the collision force. In the case of Hertz's model of
contact the collision force is given as follows:

Fr ¼ 0 x1or

Fr ¼ kH x1�rð Þ3=2 x1Zr;
ð7aÞ

while in the case of Hertz's damp model of contact the force has
the form:

Fr ¼ 0 x1or

Fr ¼ kH x1�rð Þ3=2 1þbHx2ð Þ x1Zr:
ð7bÞ

3. The definition of Lyapunov exponents and a method of their
determination

Consider a dynamical system which evolves according to the
following equation:

_x¼ fðxÞ; xðt0Þ ¼ x0; ð8ÞFig. 2. Impacting oscillators—dimensionless form.
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where x¼ x1;…; xn½ �T AD� Rn is the state vector, f ¼ f 1;…; f n
� �T is

the continuously differentiable vector field and t0 is the initial
time. Let yðtÞ be a particular solution of the system (8) and yðtÞ be a
perturbed solution. Define the difference between the perturbed
solution and the particular solution as δyðtÞ ¼ yðtÞ�yðtÞ. The time
evolution of δyðtÞ is governed by the linearized equation:

δ _yðtÞ ¼DfðyðtÞÞδy ; ð9Þ
where

DfðyðtÞÞ ¼ ∂fðxÞ
∂x

����
x ¼ yðtÞ

is the Jacobi matrix of f at point x¼ y tð Þ.
The solution of (9) can be expressed as follows:

δyðtÞ ¼Φtðx0Þδyðt0Þ; ð10Þ
where Φtðx0Þ stands for the solution of the variational equation:

_Φtðx0Þ ¼DfðyðtÞÞΦtðx0Þ; Φt0 ðx0Þ ¼ Ι; ð11Þ

where I denotes the identity matrix of the dimension n�n.
The Eq. (11) is a matrix-valued time-varying linear differential

equation. It is the linearization of the vector field along the
trajectory yðtÞ. The Lyapunov exponents can be defined as the
following limits:

λi ¼ lim
t-1

1
t
ln miðtÞ
�� ��; ð12Þ

whenever the limits exist, where miðtÞ are the eigenvalues of
Φtðx0Þ.

The definition (12) cannot be directly used in the numerical
calculations because for large t's the matrix ΦtðxÞ tends to be
ill-conditioned and in consequence the miðtÞ cannot be deter-
mined reliably. In addition, for a chaotic system at least one
Lyapunov exponent is positive which implies that ΦtðxÞis
unbounded as t-1. In order to omit such problems, one can
apply the iterative approach proposed by Benettin et al. [2] (see, e.
g., the monograph Parker and Chua [4] for the corresponding
algorithm), which is based on the Gram–Schmidt orthonormaliza-
tion procedure. This method can be successfully used to calculate
the Lyapunov exponents of autonomous as well as non-auto-
nomous systems. However, its applicability is limited by the
requirement of smoothness of the system (8) throughout the
considered time period (f has to be continuously differentiable).
Non-smoothness and in particular discontinuity in the equations
of motion make the linearization of the system according to Eqs.
(9)–(11) impossible.

Among mechanical systems there exists the important class of
systems which cannot be described by equations with a single
continuously differentiable function f. A good example would be
the systems with friction or the systems with impacts. In the case
of such systems, the linearization of the equations of motion has to
be accompanied by certain conditions for passing through a
singularity. They will be briefly described in the following section.

4. Müller's procedure and its adaptation to the systems under
consideration

Consider a dynamical systemwith singularities whose behavior
in intervals between instances of singularities t0ot1ot2o :::

(by convention, we treat the initial time t0 as a singularity instant)
and at the ends of these intervals describe the following equations
(cf. [13]):

ti�1ototi : _x¼ f iðxÞ; xðti�1Þ ¼ xði�1Þþ ; ð13Þ

t ¼ ti : 0¼ hðxi� Þ; ð14Þ

xiþ ¼ gðxi� Þ; ð15Þ

tiototiþ1 : _x¼ f iþ1ðxÞ; xðtiÞ ¼ xiþ ; ð16Þ

where x0þ ¼ x0; i¼ 1;2;…, f i, g and h are continuously differenti-
able vector functions, while xi� ¼ limt↑tixðtÞ and xiþ ¼ limt↓tixðtÞ,
respectively, are the state vector at the time immediately before
the ith point of singularity and the state vector immediately after
the ith point of singularity. In each interval ðti�1; tiÞ the system
behaves smoothly and its motion is described by Eq. (13). The
singularity instants t1; t2; ::: are determined by zeros of the smooth
function hðxÞ , i.e. by Eq. (14); the function hðxÞ can be scalar or
vector. At each time t ¼ ti, the state of the system changes
according to rules (15) defined by the smooth function gðxÞ as
well as the vector field changes from f i to f iþ1 (provided that
f iaf iþ1). In consequence, for tAðti; tiþ1Þ the system is governed
by Eq. (16). The perturbed trajectory xðtÞ ¼ xðtÞþδxðtÞ, which is
close to the unperturbed trajectory xðtÞ, reaches the corresponding
singularity at the instant ti other than ti, i.e.

ti ¼ tiþδti ð17Þ
and the following equations are satisfied as follows:

ti�1ototi : _x¼ f iðxÞ; xðti�1Þ ¼ xði�1Þþ ; ð18Þ

t ¼ ti : 0¼ hðxi� Þ; ð19Þ

xiþ ¼ gðxi� Þ; ð20Þ

tiototiþ1 : _x¼ f iþ1ðxÞ; xðtiÞ ¼ xiþ ; ð21Þ

where xi� ¼ limt↑ti
xðtÞ and xiþ ¼ limt↓ti

xðtÞ.
If the indicator function defining the singularity instants is a

scalar function, then

δti ¼ � Dh xi�� �
δxi�

Dh xi�� �
f i xi�� �; ð22Þ

in which

Dh xi�
� 	

¼ ∂hðxÞ
∂x

����
x ¼ xi�

is the Jacobi matrix of h at point xi� . The value of the perturbation
immediately after the instant of singularity

δxiþ ¼Dg xi�
� 	

δxi� þ Dg xi�
� 	

f i xi�
� 	

�f iþ1 xiþ
� 	� 	

δti ; ð23Þ

where δti is given by the Eq. (22), δxi� denotes the value of the
perturbation immediately before the instant of singularity and
Dg xi�� �

stands for the Jacobi matrix of the function g at point xi�

([33]). Note that the perturbation may experience abrupt changes
even when the considered trajectory is continuous, but it is
nonsmooth.

Knowing the initial condition δxðti�1Þ ¼ δx i�1ð Þþ , we can inte-
grate the Eq. (9) with f i inserted instead of f over the interval
ðti�1; tiÞ, and then, based on the knowledge of the vector
δxi� ¼ limt↑tiδxðtÞ, that is, the value of perturbation at the end of
the interval, we can determine the value of the perturbation δxiþ ,
which enables the continuation of calculations, i.e. integration
of (9) over the interval ðti; tiþ1Þ with f iþ1 written in place of f and
with the initial condition δxðtiÞ ¼ δxiþ .

The classical algorithm for calculating Lyapunov's exponents of
smooth equations of motion by Benettin et al. [2] along with the
modifications taking into account abrupt changes of the vector
field and perturbation vector at points of singularities has been
tested numerically and used to analyze the Eqs. (2a) and (2b) with
Hertz's model of contact (4), Hertz's damp contact model (6) and
Newton's impact model. For the first two contact models, f2i�1
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and f2i corresponds to f given by (6a) and (6b) with zero and
nonzero Fr , respectively, and the Jacobi matrices of the corre-
sponding functions hðxÞ ¼ x1�r and gðxÞ ¼ x1; x2½ � at the instants
immediately after the singularity are of the

Dh xiþ
� 	

¼ 1;0½ � ð24Þ

and

Dg xiþ
� 	

¼
∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

2
4

3
5¼ 1 0

0 1


 �
: ð25Þ

The Jacobi matrix (25) is the unit diagonal matrix. This reflects the
fact that in the case of impact oscillator with Hertz's model of
contact, the structure of vector field changes, but the velocity and
the displacement remain unchanged at the instant of collision. It is
in contrast to the hard impacts modeled by the coefficient of
restitution kr , where the vector field does not changes, but the
velocity changes at the moment of collision. In the latter case,
there is the following relation between the velocity of the mass
before the collision x�

2 and its velocity after collision xþ
2 :

xþ
2 ¼ �krx�

2 ; ð26Þ
which is known as Newton's law of impacts. Then the functions f i
are equal to each other for all i, the function h is the same as for
Hertz's contact model, while gðxÞ ¼ x1; �krx2

� �
, which implies

that

Dg xiþ
� 	

¼
1 0
0 �kr

" #
:

Within the framework of Hertz's law of impact, the ratio xþ
2 =x�

2
is called the equivalent coefficient of restitution. Since the value of
this ratio depends on x�

2 , a systemwith hard impacts and a system
with Hertz's impacts can be equivalent in the sense of the same
rate of impact energy dissipation only when the ratio is equal to 1,
i.e. when there is no damping caused by impacts in these two
systems (cf. Pust and Peterka [30]).

5. Lyapunov exponents and dynamics of linear oscillator with
Hertz's and Newton's impacts

The investigations were carried out by means of numerical
simulation of the system mathematical model. The ordinary
differential equations were solved using a modified Runge–
Kutta method, commonly known as the Runge–Kutta–Gill (RKG)
method. This method was employed to integrate the equations of
motion with the constant time-step between impacts. In the
vicinity of impact, special algorithms were used that change the
computational step of RKG so that the instant of appearance of
impact was determined very precisely. In order to find precisely
the instant of impact, the Newton iterative method was applied.

The upper part of Fig. 3a presents the bifurcation diagram of
system (6a) and (6b) for typical system parameters b¼0.05, ρ¼2,

Fig. 3. Bifurcation diagrams of displacements x1 (a) and corresponding spectra of
Lyapunov exponents λ1, λ2 (b) for Hert'z damp impact model with: b¼0.05, ρ¼2,
kH¼100, bH¼0.1 and ξ¼1; Δη¼0.001.

Fig. 4. Phase trajectories of coexisting attractors for η¼0.696, b¼0.05, ρ¼2, kH¼100, bH¼0.1 and ξ¼1: (a) impactless motion for the initial conditions x1¼0.591, x2¼�1.273
(λ1¼�0.050, λ2¼�0.050); (b) period-2 motion (z¼1/2) for x1¼1.153, x2¼�1.332 (λ1¼�0.015, λ2¼�0.089).
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kH¼100, bH¼0.1 and ξ¼1. The frequency η of the excitation force
is presented on the horizontal axis, whereas the vertical axis
shows the displacement of the system x1. The results were
simulated numerically at the increasing and decreasing frequency
in small step Δη¼0.001. After each step, the last solution was used
as a new initial value. Thus, we can observe the attractor (after the
transitional time Tη ¼ 5000UT ; T ¼ 2π=η) on the diagram during
the complete time of its existence (we say that we move along the
attractor), and coexisting attractors can be identified due to the
hysteresis region that appears. Fig. 3a is supplemented (see its
lower part—Fig. 3b) by spectra of Lyapunov's exponents character-
istics (λ1, λ2)(η). They were determined according to the proce-
dure described in Sections 3 and 4 with the ortonormalization
time To ¼ 15UT and absolute convergence precision ε¼ 0:000001

(cf. [4]). The basic criterion of distinguishing between the various
kinds of motion was the quantity z¼p/n, where p is the number of
impacts in the motion period and n is the number of excitation
force periods T in the motion period.

For the same set of parameters, the system (6a) was analyzed in
terms of amplitude by Pust and Peterka [30]. In this paper we first
show that the spectrum of Lyapunov exponents is a tool that
allows for more precise analysis of the dynamics of systems with
impacts as the knowledge of these quantities allows to identify the
attractors which have not been detected by other methods in [30].

Analyzing the dynamics of the system we can see that for a
wide range of the control parameter η, the system exhibits
identical behavior with the increase as well as the decrease
of the parameter. Such a behavior is obviously recorded for ηA

Fig. 5. Phase trajectories of coexisting attractors for η¼0.711, b¼0.05, ρ¼2, kH¼100, bH¼0.1 and ξ¼1: (a) impactless motion for the initial conditions x1¼0.575, x2¼�1.363
(λ1¼�0.050, λ2¼�0.050); (b) chaotic motion for the initial conditions x1¼�0.379, x2¼�0.717 (λ1¼0.031, λ2¼�0.136).

Fig. 6. Phase trajectories of periodic solutions for b¼0.05, ρ¼2, kH¼100, bH¼0.1 and ξ¼1: (a) period-10 motion (z¼7/10) for η¼0.716 (λ1¼�0.015, λ2¼�0.091); (b) period-16
motion (z¼14/16) for η¼0.735 (λ1¼�0.003, λ2¼�0.108); (c) period-8 motion (z¼7/8) for η¼0.736 (λ1¼�0.007, λ2¼�0.105).
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[0.650C0.695] when there is no collision in the system, and thus
the Lyapunov exponents λ1¼λ2¼�0.05 (their absolute total value
is equal to the damping coefficient). For the range ηA[0.696C0.712],
the hysteresis phenomenon is observed. The increase in the para-
meter η leads to an impactless motion (Fig. 4a), while the decrease in
η results in a chaotic motion first (ηA[0.698C0.712], see Fig. 5b) and
a period-2 motion afterwards (ηA[0.696C0.697], z¼1/2, see Fig. 4b).
Thus, we can conclude that the following solutions coexist in the
identified hysteresis region: an impactless motion with an impact
period-2 motion (Fig. 4) as well as an impactless motion with
a chaotic motion (Fig. 5). In the range ηA[0.713C0.950], regard-
less of the direction of change of the control parameter, the
system exhibits the same dynamic behavior. We can observe a
period-10 window (z¼7/10, Fig. 6a) within the range of chaotic
behavior ηA[0.713C0.734] first and then a reverse period doubling
cascade with period-16 motion for η¼0.735 (z¼14/16, Fig. 6b),
period-8 motion for ηA[0.736C0.737] (z¼7/8, Fig. 6c), period-4
motion for ηA[0.738C0.743] (z¼4/4, see [30]), period-2 motion for
ηA[0.744C0.919] (z¼2/2 and z¼1/2, see [30]) and period-1 motion
for ηA[0.920C0.950] (z¼1/1, see [30]). Decreasing the frequency η
from 0.925 (Fig. 7a, z¼1/1 ) until the value 0.919656 we can see that
both eigenvalues of the Jacobi matrix (0.60933870.365643i) are
located inside the unit circle in the complex plane, while for
η¼0.919655 a single real eigenvalue passes through the point
(�1.0) of the unit circle. As a result of this bifurcation, a perio-
dic solution of period 2T (z¼2/2) appears. Its phase plane is shown
in Fig. 7b.

When analyzing the presented diagrams of spectra of Lyapunov
exponents, it was noticed that not only do they confirm the results
of earlier work by Pust and Peterka [30], but also allow for a
more detailed analysis of the system dynamics and identifica-
tion of attractors which were not detected by other methods in
the above-cited work. For example, the period-10 window as
well as the period-16 and period-8 solutions, expanding the
period-doubling cascade range, were treated in [30] as irregular
behaviors.

Now we compare the dynamical behavior of two systems with
impacts which are equivalent in the sense of the same rate of
impact energy dissipation: a system with Hertz's impacts desc-
ribed by Eqs. (7a) (or (7b) with bH¼0) and a system with hard
impacts described by the same equations but supplemented with
impact condition (28) with kr ¼ 1. Fig. 8 presents the bifurca-
tion diagrams of displacements (a) and Lyapunov exponents (b)
for the system with Hertz contact model (Eqs. (6a) and (6b))
and parameters b¼0.05, ρ¼2, kH¼100, bH¼0 and ξ¼1. Their
analysis reveals the following behaviors of the system: an impact-
less motion for [0.65C0.705], a hysteresis in the narrow region

[0.706C0711], a chaotic motion for [0.712C0.737], and then a
reverse period-doubling cascade with impact period-16 oscilla-
tions for η¼0.738 (z¼14/16), period-8 oscillations for η¼0.739
(z¼7/8), period-4 oscillations for ηA[0.740C0.745] (z¼4/4),
period-2 oscillations for ηA[0.746C0.929] (z¼2/2 first and then
z¼1/2) and period-1 oscillations for ηA[0.930C0.950] (z¼1/1).
The mentioned hysteresis phenomenon evidences the smooth
transition from the regular regime to the chaotic regime since an

Fig. 7. Phase trajectories of periodic solutions for b¼0.05, ρ¼2, kH¼100, bH¼0.1 and ξ¼1: (a) period-1 motion (z¼1/1) for η¼0.925 (λ1¼�0.009, λ2¼�0.125); (b) period-2
motion (z¼1/2) for η¼0.91 (λ1¼�0.066, λ2¼�0.066).

Fig. 8. Bifurcation diagrams of displacements x1 (a) and corresponding spectra of
Lyapunov exponents λ1, λ2 (b) for Hertz's impact model: b¼0.05, ρ¼2, kH¼100,
bH¼0 and ξ¼1; Δη¼0.001.
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impactless motion is recorded for ηA[0.706C0.710], a period-1
motion with impacts is detected for η¼0.711, while a chaotic
motion is identified starting from η¼0.712. Fig. 9 depicts the
displacement (a) and Lyapunov exponents (b) as functions of η for
the same system as in Fig. 8 but for the range of η equal to
[0.7051C0.7121] and the step Δη¼0.0001. For increasing values of
η we observe an impactless motion until η¼0.7109 (λ1¼λ2¼
�0.05), a period-1 motion with impacts for ηA[0.7110C0.7112]
(for η¼0.711: λ1¼�0.04995, λ2¼�0.05005; for η¼0.7111: λ1¼
�0.02479, λ2¼�0.07521; for η¼0.7112: λ1¼�0.00838, λ2¼
�0.09162), a period-2 motion with impacts for η¼0.7113
(λ1¼�0.00549, λ2¼�0.09451) and a chaotic motion region for
ηZ0.7114 (for η¼0.7114: λ1¼0.02813, λ2¼�0.12813), in which a
period-24 window (η¼0.7116, λ1¼�0.00525, λ2¼�0.09475) is
identified. For decreasing values of the control parameter, we
detect chaotic behaviors first and then starting from η¼0.7057 we
observe impactless oscillations.

It is worth to point out that in the case when there is no loss of
energy during the collision in the system (Fig. 8, bH¼0), the
general structure of bifurcation diagrams (the sequence of bifurca-
tions) is identical as in the case when there is such a loss of energy
(Fig. 3, bH¼0.1). Fig. 10 presents the displacement (a) and the
Lyapunov exponents (b) as the functions of the excitation fre-
quency for the system (Eqs. (6a) and (6b)) with hard impact model
and the following parameters b¼0.05, ρ¼2, kr¼1 and ξ¼1. In this
system, there is clearly no loss of energy during the impacts.
Comparing the graphs of Fig. 10 with the corresponding graphs of

Figs. 8 and 9, we observe not only their qualitative but also
quantitative agreement. This agreement manifests itself in the
appearance, for almost the same values of the excitation force,
of the chaotic and periodic solutions with almost identical values
of both the corresponding Lyapunov exponents. Fig. 11a shows
such a chaotic solution of the system with Hertz type collisions
for bH¼0 and η¼0.7114 (λ1¼0.02813, λ2¼�0.12813), while
Fig. 11b depicts a corresponding chaotic solution of the system
with Newton type collisions for kr¼1 and η¼0.711 (λ1¼0.030,
λ2¼�0.130). It can be concluded that when the two systems begin
to come into collisions within the chaotic zones, then the corre-
sponding rates of divergence of adjacent trajectories are almost
identical, irrespective of the model of collision chosen. This is
evidenced by very close values of Lyapunov exponents. In the case
of the system with Hertz's impacts and bH¼0, the chaotic motion
disappears through reverse period doubling cascade, in which for
η¼0.738 we record a periodic motion with period 16 (Fig. 12a,
λ1¼�0.010, λ2¼�0.090). In the case of the system with Newton's
impacts and kr¼1, the chaotic behavior disappears for similar
value of the frequency η¼0.733, but bifurcating to a period-3
motion (Fig. 12b, λ1¼�0.013, λ2¼�0.087). In addition, in this case
a period-16 motion was observed for η¼0.740 (Fig. 12c, λ1¼�0.003,
λ2¼�0.097). Other significant similarities between these systems'
behavior include: a periodic motion with period 4 (z¼4/4) of the
systemwith Hertz model of contact (bH¼0) for ηA[0.740C0.745] and
the systemwith Newton's contact model (kr¼1) for ηA[0.741C0.745],
as well as a periodic motion with period 2 (z¼2/2 first and then
z¼1/2) of both the systems for a wide range of the control parameter

Fig. 9. Bifurcation diagrams of displacements x1 (a) and corresponding spectra of
Lyapunov exponents λ1, λ2 (b) for Hertz's impact model: b¼0.05, ρ¼2, kH¼100,
bH¼0 and ξ¼1; Δη¼0.0001.

Fig. 10. Bifurcation diagrams of displacements x1 (a) and corresponding spectra of
Lyapunov exponents λ1, λ2 (b) for hard impact model: b¼0.05, kr¼1 and ξ¼1;
Δη¼0.001.
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η. Some examples of such similarities are illustrated in Fig. 13 (in the
case of hard impacts the period-4 solution co-exists with a period-3
solution), Fig. 14 (in the case of hard impacts the period-2 solution co-
exists with a period-3 solution) and Fig. 15 (in the case of hard impacts
the period-2x; solution co-exists with a period-3 solution). A period-1
solution of the systemwith Newton's model of contact with kr¼1 can
be observed for η40.95. Finally, it is worth noting that in the case of
the considered systemwith perfectly elastic hard impacts the absolute
value of the aggregate sum of the Lyapunov exponents is equal to the
value of damping coefficient, just as it is in the case of the systemwith
undamped Hertz type impacts.

6. A mechanical engineering application: beam system with
impacts

Structural elements such as beams are perhaps the most
commonly used elements of engineering design (buildings, bridges,
aircraft, wind turbines). The dynamics of beams involving ampli-
tude constraint barriers was extensively studied in the literature
(see, for example, [23,31,38,39]). The results of Section 5 enrich
these results in the case of linear beam model. In particular, the
revealed qualitative and quantitative agreement (in the sense of
almost identical values of the Lyapunov exponents) of dynamical

Fig. 11. Chaotic solutions of the system with parameters b¼0.05, ρ¼2, ξ¼1: (a) Hertz's type contact model, η¼0.7114, kH¼100, bH¼0 (λ1¼0.02813, λ2¼�0.12813);
(b) Newton's contact model, η¼0.711, kr¼1 (λ1¼0.030, λ2¼�0.130).

Fig. 12. Periodic solutions of the system with parameters b¼0.05, ρ¼2, ξ¼1: (a) Hertz's type contact model, period-16 motion (z¼14/16) for η¼0.738, kH¼100, bH¼0
(λ1¼0.010, λ2¼�0.090); (b) Newton's contact model, period-3 motion (z¼2/3) for η¼0.733, kr¼1 (λ1¼0.013, λ2¼�0.087); (c) Newton's contact model, period-16 motion
(z¼16/16) for η¼0.740, kr¼1 (e.g. for the initial conditions x1¼�0.042, x2¼�1.081; λ1¼0.003, λ2¼�0.097).
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behaviors of a system with Hertz type undamped collisions of
relatively small values of stiffness and a system with perfectly
elastic hard collisions, holds true in the important case when the
two systems begin to come into collisions with low velocity, which
causes instabilities of grazing-type. However, as it was established
by Emans et al. [38], if the beams are parts of larger system, then for
physically realistic parameters, significant errors in the dynamic
responses can result from neglecting even small nonlinearities. In
this section we extend the studies of Emans et al. [38] and Lin et al.
[39] on the compound effect of the nonlinearities due to beam
deflection and linear barrier to the case of other barrier models.

Consider a simple cantilever beam system shown in Fig. 16,
consisting of a mass M and two leaf springs of length L and
bending stiffness EI. The mass is excited by a force F0 and the
boundary conditions prevent its rotation. This beam arrangement
is commonly used as a typical structural element in buildings, with
the mass representing a floor.

According to the precise nonlinear approximation for beam
reaction established in [38], the equation of motion for the beam
system from Fig. 16 accompanied with the linear barrier is as follows:

M
d2x
dt2

þc
dx
dt

þ12EI

L3
xþ432EI

35L5
x3þFρ ¼ F0 cos ωt; ð27Þ

Fig. 13. Periodic solutions with period 4 (z¼4/4) of the system with parameters η¼0.744, b¼0.05, i¼2, ξ¼1: (a) Hertz's type contact model with kH¼100, bH¼0
(λ1¼�0.019, λ2¼�0.081); (b) Newton's contact model with kr¼1 (e.g. for the initial conditions x1¼�0.169, x2¼�0.962; λ1¼�0.017, λ2¼�0.083).

Fig. 14. Periodic solutions with period 2 (z¼2/2) of the system with parameters η¼0.746, b¼0.05, ρ¼2, ξ¼1: (a) Hertz's type contact model with kH¼100, bH¼0
(λ1¼�0.001, λ2¼�0.099); (b) Newton's contact model with kr¼1 (e.g. for the initial conditions x1¼�0.237, x2¼�0.887; λ1¼�0.005, λ2¼�0.095).

Fig. 15. Periodic solutions with period 2 (z¼1/2) of the systemwith parameters η¼0.9, b¼0.05, ρ¼2, ξ¼1: (a) Hertz's type contact model with kH¼100, bH¼0 (λ1¼�0.050,
λ2¼�0.050); (b) Newton's contact model with kr¼1 (λ1¼�0.050, λ2¼�0.050).
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where the collision force Fρ is of the form:

Fρ ¼ 0 xoρ

Fρ ¼ ks x�ρð Þ xZρ;
ð28Þ

in which ks denotes the stiffness of the spring. The corresponding
first order nondimensional equations can be written as

_x1 ¼ x2

_x2 ¼ ξ cos ητ�2bx2�x1�βx13�Fr ; ð29Þ
where

Fr ¼ 0 x1or

Fr ¼ kS x1�rð Þ x1Zr;
ð30Þ

and x1 ¼ x=L, τ¼ αt, α¼
ffiffiffiffiffiffiffiffiffiffiffi
kl=M

p
, kl ¼ 12EI=L3, b¼ c=ð2

ffiffiffiffiffiffiffiffi
klm

p
Þ,

ξ¼ F0=ðα2MLÞ, η¼ ω=α, β¼36/35, r¼ ρ=L, kS ¼ ks=kl:
Detailed analysis of physically realistic responses provided

in [38] revealed qualitative differences in behavior between the
linear ðβ¼ 0Þ and the nonlinear (β¼36/35) beam systems with

linear elastic impacts. We show that this is also the case for beam
systems with Hertz's and Newton's impacts, i.e. the system
described by (29) with the collision force

Fr ¼ 0 x1or

Fr ¼ kH x1�rð Þ3=2 x1Zr;
ð31Þ

in which kH ¼ ðkh
ffiffiffi
L

p
Þ=kl, and the system described by (29) with

Fr ¼ 0 supplemented with impact condition (26), respectively.
We compare the dynamical behavior of three systems with

impacts which are equivalent in the sense of the same rate of impact
energy dissipation. Let us choose the following realistic values of
the parameters b¼0.026, ξ¼0.08, η¼0.554 and ρ¼0.079, which lead
to low amplitude oscillations (cf. [38]). Consider first the nonli-
near case β¼36/35 and the linear case β¼0 of the beam system (29)
with soft impacts of Hertz's type (31) with kH¼100. Fig. 17a shows
the Poincare map of a chaotic orbit (the Lyapunov exponents:
λ1¼0.01455, λ2¼�0.06650) for β¼36/35, while Fig. 17b depicts
a period-6 solution (λ1¼�0.02546, λ2¼�0.02654) for β¼0. For
the same values of the parameters, similar results are obtained in
the case when the impacts are modeled by Newton's law with the
restitution coefficient kr¼1. Chaotic motion shown in Fig. 18a
(λ1¼0.02364, λ2¼�0.07564) corresponds to β¼36/35 while
period-4 motion depicted in Fig. 18b (λ1¼�0.02588, λ2¼
�0.02612) corresponds to β¼0. In the case of the collision model
(30) (see, e.g., [13], [23]) the functions f2i�1 and f2i in (13) and (16)
are equal to fðx1; x2Þ ¼ ðx2; ξ cos ητ�2bx2�x1�βx13�FrÞ with
Fr ¼ 0 and Fr ¼ kS x1�rð Þ, respectively. Then the Jacobi matrices of
the transition functions hðxÞ ¼ x1�r and gðxÞ ¼ x1; x2½ � are also

Fig. 17. A comparison between (a) piecewise nonlinear and (b) piecewise linear beam system responses calculated for b¼0.026, ξ¼0.08, η¼0.554, ρ¼0.079 and kH¼100;
(a) shows a Poincare map forming a strange attractor (λ1¼0.01455, λ2¼�0.06650), while (b) depicts a period-6 response with 8 impacts per period in the form of a phase
plane (λ1¼�0.02546, λ2¼�0.02654).

Fig. 18. A comparison between (a) piecewise nonlinear and (b) piecewise linear beam system responses calculated for b¼0.026, ξ¼0.08, η¼0.554, ρ¼0.079 and kr¼1;
(a) shows a Poincare map forming a strange attractor (λ1¼0.02364, λ2¼�0.07564), while (b) depicts a period-4 with 8 impacts per period in the form of a phase plane
(λ1¼�0.02588, λ2¼�0.02612).

Fig. 16. Beam system with impacts.
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given by (24) and (25), and the values of the perturbations imme-
diately after and immediately before the instant of singularity are
related as in (23). Fig. 19a presents the Poincare map of a chaotic
solution (the Lyapunov exponents take the values λ1¼0.00293,
λ2¼�0.05493) for the nonlinear beam model with β¼36/35 and
kS ¼ 25, while Fig. 19b shows a period-7 solution (λ1¼�0.02600,
λ2¼�0.02600) for the linear beam model (β¼0) with the same
value of kS. Similar effects have also been observed for other values of
the clearance ρ as well as for other values of impact parameters
(cf. de Souza et al. [25], Emans et al. [38] and Lin et al. [39]).

7. Conclusions

In this paper, investigations of a one degree of freedom impact
oscillator with a Hertz type and Newton type one-sided amplitude
constraint have been presented. This model is commonly used to
describe the behavior of beams, which constitute basic elements of
engineering design. The obtained results allow the following
conclusions.

The occurrence of a barrier with a certain vulnerability (elastic-
damping Hertz's type stop) in a relatively simple mechanical
system causes the appearance of complex nonlinear behaviors
like bifurcations and chaos. The greatest range of chaotic behavior
takes place for the dimensionless clearance equal to 2. A signifi-
cant impact on the nature of system's behavior has the frequency
of the exciting force.

Müller's procedure and the classical algorithm of Benettin et al.
enable determining the spectrum of Lyapunov exponents for
systems with a barrier of Hertz's, Newton's as well as linear elastic
type. The knowledge of bifurcation diagrams of the spectra of
Lyapunov exponents allows a thorough analysis of the qualitative
changes of motion of the system which results in identification of
attractors which have not been reported on the basis of bifurcation
diagrams of displacements in [30].

The Hertz damp system manifests hysteretic features in its
transition from impactless motion to impact motion, namely an
impactless motion coexists with a period-2 impact motion. Other
characteristic features of systems' behavior include a period-16
window within a chaotic region as well as the classical period-
doubling cascade firstly bifurcating to a period-2, secondly to a
period-4, then to a period-8 and eventually settling to a period-16
motion.

The dynamics of a systemwith Hertz type undamped collisions,
even at relatively small values of stiffness, shows a good qualita-
tive and quantitative agreement with the dynamics of an equiva-
lent system with perfectly elastic hard collisions. This agreement
manifests itself in the appearance, for almost the same values of

the excitation force, of the chaotic motions with identical values
of both the corresponding Lyapunov exponents as well as in the
existence, in a wide range of the control parameter, of periodic
motions with impacts for which the corresponding Lyapunov
exponents are very close to each other. In particular, this is the
case when the two systems begin to come into collisions with low
velocity impacts, resulting in instabilities of grazing-type.

The comparison of dynamic responses of simple linear and
nonlinear cantilever beam systems with impacts of Hertz's and
Newton's type revealed their qualitative differences for physically
realistic parameters. In the case of the linear elastic impact model
this effect was established in [38].
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