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We discuss the use of perpetual points for tracing the hidden and the rare attractors of dynamical 
systems. The analysis of perpetual points and their co-existence due to the parameters values is presented 
and the impact of these points on the behavior of the systems is shown. The results are obtained for 
single as well as coupled externally excited van der Pol–Duffing oscillators. The presented results can be 
generalized to other systems having different dynamics.
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1. Introduction

The theory of nonlinear dynamical systems is one of the fastest 
growing branches of applied mathematics, which is nowadays used 
in many areas of physics, chemistry and other natural sciences. The 
possible final states of the system – known as its attractors – are 
the key concept of this theory. Recently, new types of attractors 
known as the hidden [1–15] and rare [16–21] are thoroughly stud-
ied.

The hidden attractors – the ones whose basins of attraction do 
not intersect with the neighborhood of any equilibrium, have been 
found in Chua’s circuit [1–4], Lorenz type systems [5–7], chaotic 
flows [8–11] and others. In [12] the authors study a time-delayed 
system, and in [13] hidden oscillations of autonomous van der Pol–
Duffing oscillator are described. In the control theory [4,14] this 
type of states is also analyzed. Thorough study on the topic can be 
found in [15], where Leonov and Kuznetsov investigate the hidden 
attractors from the very beginning of this phenomenon.

The second lately described type of states are the rare attrac-
tors – these, whose basins of attraction are significantly smaller 
than the basins of other co-existing attractors (so their occurrence
is less probable and localization is not straightforward) [16]. The 
concept of rare attractors was introduced by Zakrzhevsky et al. in 
[17], where mechanical system with several degrees of freedom is 
discussed. In [18–20] studies about different types of pendulum 
systems can be found and in [21] the authors describe rare attrac-
tors in discrete-time models.
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The concepts of the described two types of attractors are not 
identical and define quite different kinds of states. An attractor 
can be a hidden one but not rare and vice versa. The hidden 
property depends on the existence (and location) of equilibriums 
in the system, which cannot be changed without interfering with 
the parameters or the structure of the system itself. On the other 
hand, the attractor can be considered as rare depending on the set 
of accessible initial conditions [16]. Nonetheless, in many models 
(especially the ones without any equilibriums), attractors can be 
simultaneously hidden and rare. The examples of such attractors 
are presented in our research.

Multistability in dynamical system is a common feature. Uncov-
ering all co-existing attractors and their basins are very important 
for understanding the systems. One of the major difficulties in un-
derstanding such systems is to locate the co-existing attractors. 
This becomes even more difficult when these states are either hid-
den or rare. In this paper we attempt to locate such hidden/rare at-
tractors which co-exist in a large number even in simple examples.

The most elementary analysis of dynamical systems usually be-
gins from searching for stationary points of the system and study-
ing their stability. Although the theory of the fixed points (equi-
libriums) is very well known [22–26], many interesting results can 
still be obtained [27–35]. Stochastic equations [27], fractional-order 
models [28], Hamiltonian systems [29], equations with delays [27,
30,31] are only a few examples of the issues for which the stud-
ies about stationary points are still being carried out. Due to the 
nature of the hidden and rare attractors the stationary points are 
much less useful for tracking such states, than they are for the sys-
tems with self-excited attractors.
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In this work we investigate the new class of critical points, 
called perpetual points, which have been introduced by Prasad 
in [36]. These are defined as the points where the acceleration of 
the system becomes zero while velocity remains nonzero. Various 
interesting properties of these points and their use can be found 
in the quoted paper.

In order to present the results we consider a van der Pol–
Duffing oscillator, which is one of the most studied dynamical 
systems [37–53]. The bifurcation analyses of this system (including 
e.g., Hopf, Hopf–Pitchfork bifurcations) can be found in [37–43]. In 
[43] the influence of the noise on the dynamics is presented, while 
in [44,45] the impact of two external forces is shown. Many studies 
refer to the adaptive synchronization of the oscillators [46,47], dif-
ferent types of coupling [40,48], delay feedback [37,49–51]. Some 
analytical considerations can be found in [52], while in [53–55]
different types of attractors are studied. All these works confirm 
that the van der Pol–Duffing system is the issue for which many 
interesting results have been obtained and many more can still be 
done.

In this paper we use the perpetual points to locate the hid-
den/rare attractors. Their analysis and the influence on the dynam-
ics are studied and discussed. Section 2.1 contains the main results 
obtained for a single oscillator, while in Section 2.2 the results for 
the coupled systems are shown. Conclusions are presented in Sec-
tion 3.

2. Results

2.1. Single oscillator

We consider single externally excited van der Pol–Duffing oscil-
lator which is given by equation

ẍ − α(1 − x2)ẋ + x3 = F sin(ωt), (1)

where x is the state variable and α, F and ω are constant pa-
rameters. In all calculations in this subsection we have fixed the 
first two parameters at α = 0.2 and F = 1. For various ω values 
the system (1) can be monostable (e.g., for ω = 0.8) having one 
self-excited attractor, as well as multistable, in which case the hid-
den and self-excited attractors co-exist. Considering suitable phase 
space boundaries, some of these attractors are also rare.

In order to find perpetual points, system (1) has to be trans-
formed into a set of first-order autonomous ordinary differential 
equations (as the result the phase space will be three-dimensional) 
and the second derivatives of the state variables of such system 
have to be equal to zero.

We denote x1 as the position variable (x1 := x) and x2 as the ve-
locity (x2 := ẋ), while t is considered as the new, time-dependent 
variable (which obviously appears as the equation ṫ = 1). Conse-
quently, perpetual points of the system (1) are solutions of the set 
of equations:{

α(1 − x1
2)x2 − x1

3 + F sin(ωt) = 0

−2αx1x2
2 − 3x1

2x2 + ωF cos(ωt) = 0.
(2)

Relation (2) consists of polynomial equations (due to the vari-
ables x1, x2) and is underdetermined – 2 equations with 3 vari-
ables. We have been searching for the perpetual points in the 
box (x1, x2, t) ∈ [−2, 2] × [−3, 3] × [0, 2π/ω), for fixed value of ω. 
The boundaries for position and velocity variables result from the 
basins of attraction of system (1), where initial conditions of rare 
attractors are mostly located. The structure of these basins is com-
plicated [12] and changes mainly due to the value of ω parameter. 
The examples and analysis of these rare attractors can be found 
in [16]. On the other hand, periodicity of trigonometric functions 
present in (1) implicates the boundary for t .
Fig. 1. (Color online.) Perpetual points of system (1) for parameter ω = 0.962. In 
(a) points in three-dimensional phase space (x1, x2, t) are shown, while in (b) their 
projection on (x1, x2) plane is presented. (c) The number of co-existing points as a 
function of time. (d) The basins of attraction for single oscillator and the trajectory 
points (marked as black dots) when crossing the t = 2π/ω.

Relation (2) can be transformed into one rational equation due 
to variable x1 and solved for fixed t . In our calculations the New-
ton’s method for finding approximations to the function roots is 
used. Also, the form of equations in (2) allows to observe a simple 
property, that is helpful in finding the perpetual points, i.e., if the 
point (x∗

1, x
∗
2, t

∗), where t∗ ∈ [0, T /2) for T := 2π/ω is perpetual 
one, then the point (−x∗

1, −x∗
2, t

∗ + T /2) is perpetual too. This fact 
allows to reduce the searching to interval t ∈ [0, T /2). Nonetheless, 
both points (x∗

1, x
∗
2, t

∗) and (−x∗
1, −x∗

2, t
∗ + T /2) should be exam-

ined for the attractors because due to the asymmetry of basins of 
attraction they may lead to different states.

The results of our calculations for ω = 0.962 are shown in 
Fig. 1. The existence of perpetual points in three-dimensional 
phase space (x1, x2, t) is presented in Fig. 1(a). Each element of 
the curves represents the perpetual point obtained for relation (2)
for fixed t value. The position of these points changes continuously 
when t increases. The phase space is splitted into three parts – 
the blank region and two subspaces �1 and �2 marked as green 
boxes. In the blank one, for a fixed t only one perpetual point 
exists and is unique on (x1, x2) plane. In �1 and �2 spaces one 
observes co-existence of the perpetual points. For fixed t we have 
two co-existing points (marked as red dots) or three co-existing 
points (marked as blue ones) as shown in Fig. 1(a–b). The inter-
vals of t values where this co-existence appears are presented in 
Fig. 1(c), where npp denotes number of perpetual points. As one 
can observe, there are two narrow time intervals for npp = 2 and 
two wider for npp = 3. For better clarity, in Fig. 1(b) the projection 
of the obtained points on (x1, x2) plane is shown. The color code 
corresponds to Fig. 1(a) and part of the curve where co-existence 
appears is shown as an enlargement in the inset. The symmetry 
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of the figure around point (0, 0) results from the above described 
property of equations (2). In order to determine the attractors to 
which the obtained points lead when considered as initial condi-
tions for (1), we have run the system from each one of them and 
have saved the space coordinates when trajectory crosses fixed sur-
face – t = 2π/ω. The obtained results are shown in Fig. 1(d). The 
basins of attraction for t = 2π/ω (which changes periodically with 
the period of excitation of system (1)) have been used as the back-
ground of the plot. Each color correspond to the basin of different 
attractor. The dynamics of each state is determined using Poincare 
sections, based on the period of external excitation. The number of 
the points on the map corresponds to the periodicity of solution. 
In the considered example, the red, blue and green basins are the 
dominant ones and refer to two 9 periodic and a quasiperiodic at-
tractor respectively. The other states, for space boundaries as in the 
figure, can be considered as the rare attractors – their occurrence
for randomly chosen initial conditions is significantly less proba-
ble than for the dominating attractors. The white region leads to a 
25 periodic solution and the pink one to a state of period 35. In 
the area marked by cyan color two 70 periodic attractors co-exist, 
though, due to the applied resolution and limitations of calcula-
tions, their basins are not separated. Similarly in the yellow region, 
where three possible solutions can be obtained – two symmetrical 
49-periodic and 63-periodic one. For the considered value of pa-
rameter ω one unstable fixed point exists, i.e., (x1, x2) = (0, 0), and 
its neighborhood intersects with the basin of quasiperiodic solu-
tion (green region). Thus, by definition, the quasiperiodic attractor 
is self-excited and the remaining attractors (periodic ones) are hid-
den.

Trajectory points when crossing t = 2π/ω surface are marked 
as black dots in Fig. 1(d). As one can notice, the points cross vari-
ous regions, also the ones where rare attractors basins are located 
(the examples of these are marked as two black insets in Fig. 1(d)). 
This implies the diversity of the observed states. Using perpetual 
points we have obtained ten attractors for the considered system – 
nine periodic and one quasiperiodic.

The results obtained for different values of ω are presented in 
Fig. 2. In the left panel, Figs. 2(a–d), the projections of Poincare 
maps of system (1) on the x1 subspace are shown. For each per-
petual point taken as the initial condition (points are identified by 
t value on the horizontal axis and in the case of the co-existing 
points only one of them is considered), the map is calculated and 
its projection is plotted on the vertical axis of the diagram. Such 
results allow to analyze the type and the number of the co-existing 
attractors, e.g., for (a) ω = 0.955 and (b) ω = 0.963 the irregular 
attractors (chaotic or quasiperiodic) can be observed and also the 
periodic ones, most of them of high period. On the other hand, 
when ω increases, for (c) ω = 0.966 and (d) ω = 0.972 only reg-
ular dynamics is present and the period of possible solutions has 
decreased. Knowing the initial conditions (perpetual points), we 
can also trace these attractors and locate some approximations of 
their basins of attraction. Using the same method of calculations, 
in the right panel – Figs. 2(e–f), the behavior of the states obtained 
for various values of ω parameter is shown. Each color on the 
plot corresponds to the period of the solution obtained for fixed 
ω and the perpetual point (calculated for corresponding t value). 
In Fig. 2(e) high period solutions are presented, while in Fig. 2(f), 
the low period ones are shown. It should be emphasized that for 
some attractors values of their period are off the scale. Such a sit-
uation occurs when the dynamics is quasiperiodic or chaotic (for 
these we denote 150 on the color scale; the highest period we 
have observed is 148) and when the behavior is periodic indeed, 
but the period value is lower or higher than the boundary of the 
color code which is actually used (e.g., some of the attractors in 
Fig. 2(e) are below period 50, but are denoted by color corre-
sponding to this value). Nevertheless, from the obtained results 
Fig. 2. (Color online.) In the left panel – (a–d), different types of attractors of sys-
tem (1), obtained for calculated perpetual points, are shown as the projections of 
their Poincare maps on the x1 subspace. Increasing from the top to the bottom, 
ω = 0.955, 0.963, 0.966, 0.972 respectively. In the right panel – (e–f), period of so-
lutions is shown, with (e) corresponding to ω ∈ [0.953, 0.963] and (f) corresponding 
to ω ∈ [0.964, 0.974].

one can conclude how complex the dynamics of system (1) is and 
how it changes, even for slightly different parameter values. Even 
though the position of perpetual points in space changes continu-
ously with t , we can observe essential differences in the character 
of the solutions to which these points lead. This gives an idea of 
how irregular boundaries of basins of co-existing attractors are.

2.2. Coupled oscillators

In this subsection we consider a system of two coupled ex-
ternally excited van der Pol–Duffing oscillators which is given by 
equations{

ẍ − α(1 − x2)ẋ + x3 + g1(x, y, ẋ, ẏ) = F sin(ωt)

ÿ − α(1 − y2) ẏ + y3 + g2(x, y, ẋ, ẏ) = F sin(ωt),
(3)

where x, y are the state variables, α, F , ω are the parameters and 
g1, g2 are the coupling functions. In all our calculations we have 
fixed the parameters for both oscillators at α = 0.2, F = 1 and 
ω = 0.962. The coupling functions can be chosen arbitrarily and in 
peculiar cases they can depend on both the position and the ve-
locity of the oscillators. In our considerations these functions have 
been defined as g1 = ε(y − x) and g2 = ε(x − y), where ε ≥ 0 is 
the coupling coefficient and can be read as linear springs that cou-
ple oscillators.

The method of finding perpetual points of system (3) is the 
same as it is for the previous equation (1). Here, we denote x1
as the position and x2 as the velocity of the first oscillator (first 
equation in (3)), y1 as the position and y2 as the velocity of 
the second oscillator (second equation in (3)) and t as the new 
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Fig. 3. (Color online.) Number of co-existing perpetual points (npp parameter) in 
the function of coupling strength ε (left panel) and projection of these points on 
position-velocity plane (blue dots in right panel) for system (3). Variable t is fixed 
for each diagram and increases from the top to the bottom, t = 0.05 · 2π/ω, 0.35 ·
2π/ω, 0.9 · 2π/ω respectively. Points of trajectories (starting from perpetual points) 
while crossing the t = 2π/ω surface are marked as red dots.

time-dependent variable. Perpetual points of the system (3) are the 
solutions of the set of equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(1 − x1
2)x2 − x1

3 + F sin(ωt) + ε(x1 − y1) = 0

−2αx1x2
2 − 3x1

2x2 + ωF cos(ωt) + ε(x2 − y2) = 0

α(1 − y1
2)y2 − y1

3 + F sin(ωt) + ε(y1 − x1) = 0

−2αy1 y2
2 − 3y1

2 y2 + ωF cos(ωt) + ε(y2 − x2) = 0.

(4)

Likewise, relation (4) consists of polynomial equations (due to 
the variables x1, x2, y1, y2) and is underdetermined – 4 equations 
of 5 variables. The area of searching for perpetual points is analo-
gous as in the case of a single oscillator – five-dimensional phase 
space (x1, x2, y1, y2, t) ∈ [−2, 2] × [−3, 3] × [−2, 2] × [−3, 3] ×
[0, 2π/ω). Although, due to the coupling components, equa-
tions (4) can be simplified into two polynomial equations due to 
variable x1, x2 (or y1, y2, which depend on the transformation) 
and then solved for fixed t . In calculations, the version of New-
ton’s method for solving nonlinear systems of equations is used.

Relation (4) has the same property as relation (2), i.e., if point 
(x∗

1, x
∗
2, y

∗
1, y

∗
2, t

∗), where t∗ ∈ [0, T /2) for T := 2π/ω is perpet-
ual one, then point (−x∗

1, −x∗
2, −y∗

1, −y∗
2, t

∗ + T /2) is perpetual 
too. Moreover, due to the similarity of equations (4) and (2) and 
from the fact that oscillators are identical, two additional obser-
vations can be made. Firstly, if (x∗

1, x∗
2, t

∗) is a perpetual point of 
system (1), then the point (x∗

1, x∗
2, x

∗
1, x

∗
2, t

∗) is a perpetual point 
of system (3) for any value of the coupling coefficient ε (the cou-
pling components disappear). Secondly, for a fixed value of ε, if 
(x∗

1, x
∗
2, y

∗
1, y

∗
2, t

∗) is a perpetual point of system (3), then the point 
(y∗

1, y
∗
2, x

∗
1, x

∗
2, t

∗) is also a perpetual point of system (3) (which 
concludes from the symmetry of equations (1, 3) and (2, 4) in (4)). 
The knowledge of these properties allows to optimize the calcula-
tions.

The results of our research are shown in Fig. 3. In the left panel, 
the number of the obtained perpetual points in the function of 
coupling strength is presented. For each plot t variable is fixed and 
the number of points, denoted by npp parameter, has been cal-
culated for ε ∈ [0, 2]. As one can observe, when t = 0.05 · 2π/ω
Fig. 4. (Color online.) Poincare maps (left) and trajectories (right) of regular at-
tractors obtained from perpetual points, that exist only for coupled oscillators sys-
tem (3). Increasing from the top to the bottom, ε = 0.02 (co-existing attractors of 
period 25), ε = 0.06 (one common attractor of period 18) and ε = 0.36 (co-existing 
attractors of period 3).

(Fig. 3(a)), for small coupling perpetual points are unique, then 
when the strength increases, in the narrow interval 5 points co-
exist and after reaching some threshold ε value, npp parameter 
stabilizes on 3. For larger t values, Fig. 3(b–c), more complex be-
havior occurs and the number of co-existing points varies. For 
t = 0.35 ·2π/ω it changes from 1 to 9 and for t = 0.9 ·2π/ω from 3 
to 9. It should be noted that the npp parameter is even in all these 
cases. It is a simple conclusion from the properties of relation (4)
described above. For all t values considered in Fig. 3, the single 
system (1) has one unique perpetual point and for every point 
obtained for the coupled system there co-exists the correspond-
ing point if we interchange the oscillators. Hence, npp = 1 + 2k for 
some k ∈ N. In the right panel in Fig. 3 the corresponding pro-
jections of perpetual points on position-velocity plane are marked 
as blue dots. The position of points in phase space (on curves) 
changes continuously with increasing t , like it is for a single oscil-
lator. In addition, we plot the trajectory points of system (3) when 
they cross fixed subspace t = 2π/ω and these points are presented 
as red dots in figure.

Considering the perpetual points as the initial conditions one 
can obtain the attractors that appear only for the coupled sys-
tem (3) and have not been found for a single oscillator (1), for 
the same parameter values (the attractors of single van der Pol–
Duffing model for parameters α = 0.2, F = 1 and ω = 0.962 can 
be found in [54]). The examples of these states are shown in Fig. 4
and Fig. 5. In both figures Poincare maps are presented in the left 
panel and the projections of trajectories on two-dimensional plane 
in the right one. The colors on the plots correspond to the legend 
on the axes (the oscillators first – x, and the second – y are de-
noted by red and blue colors respectively). The only exception is 
Fig. 4(b), where both subsystems are marked in green.
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Fig. 5. (Color online.) Poincare maps (left) and trajectories (right) of irregular at-
tractors obtained from perpetual points, that exist only for coupled oscillators sys-
tem (3). Increasing from the top to the bottom, ε = 0.02 (co-existing chaotic at-
tractors), ε = 0.3 (one common quasiperiodic attractor) and ε = 0.63 (co-existing 
quasiperiodic attractors).

In Fig. 4 the examples of periodic solutions are presented, for 
fixed coupling parameter values. In Fig. 4(a) two states of period 
25 co-exist. The trajectories are symmetric around the origin of co-
ordinate systems and the oscillators are anti-phase synchronized. 
The example of synchronization is shown in Fig. 4(b), where both 
subsystems get attracted to the 9 period solution. Another anti-
phase synchronization scenario is presented in Fig. 4(c), where the 
value of attractors period is 3. On the other hand, irregular at-
tractors for coupled systems are shown in Fig. 5. An example of 
chaotic one is in Fig. 5(a). Though the oscillators are desynchro-
nized, the attractors seem to have similar structure. In Figs. 5(b–c), 
the quasiperiodic dynamics is presented. In the first, the subsys-
tems are synchronized with a lag on one common state. In the 
second one, oscillators are anti-phase synchronized on two tori. 
Any state shown in Figs. 4–5 (in the sense of attractor on which 
the first or the second oscillator is) have not been observed for a 
single system using perpetual points. It suggests that these states 
can be born only when the oscillators are coupled.

The results obtained for the coupled system can be generalized 
in two ways. Any number of oscillators can be considered, which 
complicates the equations to solve, although, in the case of the 
simple coupling functions like the one used in the above example, 
the system can still be simplified into two polynomial equations 
and two-dimensional Newton’s method can be used. Also, different 
types of coupling functions can be studied.

3. Conclusions

In this work we have given numerical evidence showing that 
the perpetual points are useful in finding and describing the hid-
den and rare attractors in the dynamical systems, both single and 
the coupled ones. In the first case, the discussed points allow to 
trace the co-existing attractors of multistable systems and opti-
mize the issue. Instead of analyzing the entire phase space (usually 
high-dimensional) it is enough to examine the perpetual points – 
which are usually finite or low-dimensional set (in our example 
one-dimensional curves). This suggests that we can minimize the 
computational time for searching as well as accurately uncovering 
the co-existing attractors. In the coupled system, though, the study 
of perpetual points allows us to identify new local behavior of the 
oscillators, that has not been seen for a single unit. Since any of the 
obtained attractors (red, blue or green in Figs. 4–5) have not been 
found for a single oscillator, it is not easy to determine the initial 
conditions for which they can be born for the coupled subsystems 
using standard methods. All presented results can be successfully 
obtained also for other systems, both single and coupled, with dif-
ferent types of dynamics.

Further studies of the complex structure of the basins of at-
traction of the perpetual points and the basins of corresponding 
attractors can lead to the better understanding of the connection 
between perpetual points and hidden attractors.

Described results show that, despite its simplicity, the van 
der Pol–Duffing oscillator is very rich in terms of dynamics and 
that each study on this system provides new and interesting re-
sults. Furthermore, presented technique of application of perpetual 
points may be very useful to analyze and understand the compli-
cated behavior of such systems, which can extend our knowledge 
in the theory of nonlinear dynamical systems.
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