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a b s t r a c t

We study theoretically and experimentally the synchronization phenomenon of two rotating parametric
pendulums attached to common elastic support under harmonic excitation. Two types of synchronous
states have been identified – complete and phase synchronization. The interactions in the system have
been investigated numerically and experimentally. The relation between the synchronization mode and
the stability of the rotational motion for a system with flexible support has been studied. It has been
demonstrated that the synchronization of pendulums rotating in antiphase is more beneficial from
energy harvesting viewpoint than the synchronization in phase. Finally, an influence of the parameter
mismatch between the pendulums on their synchronization has been examined.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The objective of this paper is to study the synchronization of
rotational motion in the system of two parametric pendulums
subjected to common harmonic excitation. The study has been
motivated by a possibility of applying such a system for energy
harvesting, as the oscillatory motion can be converted into rotation
of pendulums. Consequently, the energy can be harvested from the
rotational motion, which is a strongly advantageous alternative to
using the energy of oscillations. The challenge of the design of such a
structure lies in balancing it properly to guarantee dynamic stability
once the pendulum is in motion. Therefore, to compensate for the
effect which a single rotating mass exerts on the support, the system
consisting of two pendulums is being considered. To achieve the
desired balance of forces the pendulums would be required to
counter rotate in a synchronized manner. If their responses are
synchronized in antiphase the structure remains stable. This section
provides an overview of the basics of synchronization theory,
reviews the main recent works on the dynamics of parametric
pendulum and looks at synchronization in pendulum systems.

1.1. Synchronization theory

The term ‘synchronous’ originates in Greek and denotes some-
thing ‘sharing the same time’. The discovery of the synchronization

phenomena is directly related to the dynamics of the pendulum. It
has been first observed and described in the 17th century by a Dutch
researcher, Huygens, on an example of pendulum clocks hanging on
the same wall [13]. Recently his experiment has been repeated in
Kapitaniak et al. [14]. Huygens observation revealed that the clocks
were exactly synchronized, swinging in opposite directions. Even if
any disturbance occurred, they were still returning to the synchro-
nized state after some transient time. The reason for this behaviour
has been identified in the coupling effect of the beam supporting the
clocks, transmitting the vibrations.

Since then synchronization has been detected in various
systems and described in many publications. Pikovsky et al. [21]
and Blekhman et al. [4] give examples of this phenomenon in
mechanical, electrical or biological systems. In the most general
sense, occurrence of synchronization between two systems
implies existence of some relationship between their responses,
without specifying exactly the type of this relation, which can be
of a complex nature. Therefore, sometimes synchronization is
difficult to detect, as it cannot always be associated with the
identity of trajectories. Depending on the relation between the
responses, several types of synchronization have been classified.
Considering two systems, where x(t) and y(t) denote their trajec-
tories, the following types of synchronization can be distinguished
[5]: Complete synchronization [CS] is a state at which both phases
and amplitudes of the oscillating systems coincide. It can be
achieved only in case of identical oscillators when some kind of
internal or external coupling between them is introduced. The
definition of the CS concept has been introduced by Pecora and
Carroll [19] and is said to be a state in which phase trajectories x(t)
and y(t) of the coupled systems converge to the same value and
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remain in this relation during the further time evolution. The
above concept can be described by the following relation:

lim
t-1

xðtÞ�yðtÞ ¼ 0;j
�� ð1Þ

In practice very often the identity conditions are not fully met. If
there is a difference in parameters or noise is present the imperfect
complete synchronization [ICS] occurs and the synchronizability
condition becomes

lim
t-1

xðtÞ�yðtÞ oϵ;j
�� ð2Þ

where ϵ is a small parameter. Phase synchronization [PS] describes
a weaker degree of synchronization. The required coupling
between the systems is much lower than in case of CS so that
the identity condition is not necessary. It occurs when the phases
of oscillations are locked within a certain range. Generally speak-
ing, this correlation does not imply any relation between the
amplitudes. The mathematical condition for PS is given by

nΦ1ðtÞ�mΦ2ðtÞ oc;j
�� ð3Þ
where Φ1 and Φ2 denote phases of the coupled oscillators n, m
integers determining the locking ratio and c is a constant. As a
consequence, the frequencies of both systems ω1 and ω2 need to
be locked as well and satisfy the relation

nω1�mω2 ¼ 0; ð4Þ
Based on the type of the system in which synchronization is
observed, another classification can be introduced. The first case,
based on classical understanding of synchronization, is the syn-
chronization of coupled periodic oscillators. The rhythms of self-
sustained periodic oscillators adjust due to their weak interaction,
where this adjustment can be described in terms of phase locking
and frequency entrainment. The basic model of such coupled
system consisting of two oscillators is given by

dx1
dt

¼ f 1ðx1Þþϵp1ðx1; x2Þ;
dx2
dt

¼ f 2ðx2Þþϵp2ðx2; x1Þ; ð5Þ

where ϵ is the coupling parameter. If ϵ vanishes the subsystems
become independent and oscillate with their natural frequency. The
second type of interaction considered here is the synchronization of
periodic oscillators by external force. It can be also observed when
a periodic force (or noise) is applied to a group of non-coupled
autonomous oscillators. Its occurrence depends not only on the
magnitude of forcing but also on the difference between the natural
frequency of the system and the forcing one, called detuning
parameter. Inside the synchronization region, the system oscillates

with the frequency of the external force, while outside quasiper-
iodic motion can be observed.

Synchronization can also be observed in a noisy system. For such
a system the condition for synchronization needs to be modified,
for a less rigorous one. The perfect frequency entrainment is not
observed any more. A state where frequencies nearly adjust, but still
phase slips can be observed, is defined as imperfect phase synchro-
nization (IPS). Finally, synchronization can be observed also for
chaotic systems [25,15,6,20,26,23]. Its detection however depends
on the type of attractor and can be more complex.

1.2. Parametric pendulum

The parametric pendulum is a system which has been of great
interest for years, because of its rich dynamical behaviour [7,3,28,9].
It is a model with numerous engineering applications, including
marine structures, superconductor Josephson junction. Many oscil-
lating systems contain pendulum like non-linearity. Therefore,
parametric pendulum has been one of the most common systems
in the literature illustrating the dynamics of a non-linear oscillator.
Among its various responses equilibrium points, oscillations, rota-
tions as well as chaos can be observed.

The physical model of a parametric pendulum and the phase
plane representation of the basic responses for unforced undamped
system are shown in Fig. 1. The vertical oscillation of the pivot point
results in the oscillations or rotations of the pendulum, depending
on the initial conditions and forcing parameters. The closed loops
marked by 1 and 2 correspond to the oscillations around hanging
down position. Once the sufficient amount of energy is supplied the
pendulum can escape from the potential well passing the critical
case described by separatix (curve 3) and enter rotational motion
regime (curves 4).

For many engineering applications, oscillatory responses are of
main interest. Rotation of pendulum like systems has been studied
before in relation to rotor dynamics and in recent years the research
intensified due to potential applications in energy harvesting.

Approximating the escape zone has been the topic of study for
Trueba et al. [32], Thompson [31], Bishop and Clifford [9] who used
symbolic dynamics approach in their work. Different types of rota-
tions have been classified in [8]. Xu and Wiercigroch [34] derived an
analytical solution for rotational motion using multiple scales method
where Sofroniou and Bishop [28] applied the harmonic balance
method to the problem. Limit of rotational motion existence has
been determined analytically by Koch and Leven [16] and Lenci et al.
[17], who gave analytical approximation of the rotational solutions
including study of their stability.

m

l

y

Fig. 1. (a) Physical model of parametrically excited pendulum and (b) phase plane showing different responses of the unperturbed pendulum in terms of pendulum
displacement and velocity [35].
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1.3. Synchronization in pendulums systems

Synchronous motion of pendulums is a classic example of
synchronization, which has been studied in the literature for many
years. It has been initiated by Huygens, based on the observation
of the pendulum clocks. Senator [27] has analysed the model of
two pendulum clocks, suspended at the common horizontal beam
driven by the escapement mechanism, which can approximate the
behaviour observed by Huygens. The synchronization is achieved
due to horizontal elasticity of the supporting beam, which can
oscillate together with the pendulums.

Banning et al. [2] have studied the dynamics of a system of two
coupled parametrically excited pendulums. The four types of
responses which were covered by the study comprise downward
equilibrium position, synchronized in-phase oscillation, synchro-
nized anti-phase oscillation and a mixed motion of two pendulums,
corresponding to the lack of synchronization. Teufel et al. [30]
studied the synchronized oscillation of the coupled pendulums,
which can be described by the Van-der-Pol equations. The pendu-
lums are connected by a linear spring and exposed at the steady fluid
flow. Existence and stability of the synchronized solutions are
investigated for the case of strong and weak coupling. The transition
to escape from the synchronized state for an undamped pendulums
system has been studied by Quinn [24]. Since the concept of
synchronization has been transferred to chaotic systems, synchroni-
zation of chaotic pendulums has been investigated. Fradkov and
Andrievsky [12] studied the synchronization phenomena for the
system of two coupled pendulums, where one of themwas forced by
an external torque and coupled with the second one by a torsional
spring. The external forcing plays a role of a control action.

The model of two coupled periodically forced chaotic pendulums
was also studied by Baker et al. [1], where the coupling was
unidirectional, so that the relation between the pendulums was of
a ‘master–slave’ type. Zhang et al. [36] considered a case of
synchronizing uncoupled parametric pendulums in their chaotic
regime. Application of the control method, which would bring the
chaotic trajectories starting from different initial conditions to
coincide, was discussed. Synchronization control based on the
pendulums energy level was proposed by Pogromsky et al. [22].
Most of the studies deal with synchronized oscillations or chaotic
motion. In recent years along with more interest in rotational
motion, the synchronized rotation of pendulums was studied.
Synchronization in the system of rotating pendulums on the
common movable support was studied recently in [11,10]. Different
synchronization types were identified in the system with separate
forcing applied directly to each pendulum. More recently an experi-
mental study of four rotating double pendulums under common
parametric excitation has been conducted by Strzalko et al. [29].

This paper is structured as follows. In Section 2 mathematical
model of the two pendulums system is constructed. It is followed
by a numerical study of the synchronization phenomena.

Results showing different synchronized responses of the sys-
tem are presented, with the focus on the rotational motion. The
in-phase and antiphase synchronization cases are compared from
the point of view of stability of the rotational motion and the base
response. Finally, the influence of the parameter mismatch on the
response of the system and its synchronization is studied. In
Section 4, the experimental setup and results are presented and
compared with the numerical ones.

2. Modelling of rotating parametric pendulums system

The system considered in this study consists of the two
pendulums mounted on the commonly excited flexible supporting
structure. Initially, it has been modelled on a plane as a four-
degrees-of-freedom system illustrated in Fig. 2(a), where x and y
denote the displacement of the structure in the horizontal and the
vertical direction respectively, θ1 and θ2 describe the angular
displacements of the pendulums from the downward zero posi-
tion, l1 and l2 denote their lengths. m and M are the masses of
pendulum bobs (treated as a point masses) and supporting
structure respectively. kx; ky; cx; cy represent the overall stiffness
and damping properties of the pendulum support in the horizon-
tal and the vertical direction. Synchronized state can be achieved
due to coupling effect of the elastic base, capable of transmitting
vibrations between the pendulums, as well as the common
harmonic forcing applied at the base in the vertical direction.
The equations of motion for the system have been derived using
the Lagrange energy method [18]:

Mþ2mð Þ €Xþcx _XþkxXþþml1 €θ1 cos θ1� _θ
2
1 sin θ1

� �

þml2 €θ2 cos θ2� _θ
2
2 sin θ2

� �
¼ 0;

Mþ2mð Þ €Y þcy _Y � _Ry

� �

þky Y�Ry
� �þþml1 €θ1 sin θ1þ _θ

2
1 cos θ1

� �

þml2 €θ2 sin θ2þ _θ
2
2 cos θ2

� �
¼ 0;

ml21
€θ1þml1

� €X cos θ1þ €Y sin θ1þg sin θ1

� �
þcθl1

_θ1 ¼ 0;

ml22
€θ2þml2

� €X cos θ2þ €Y sin θ2þg sin θ2

� �
þcθl2

_θ2 ¼ 0; ð6Þ

X

Y=Asin(Ωt)
θ2

kx

cx

ky cy

θ1 l1

l2

Fig. 2. (a) Physical model of the pendulum system and (b) schematic representation of the interactions between the synchronized subsystems.
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where Ry ¼ A sin ðΩtÞ represents the harmonic excitation applied
to the base. In the first stage of the study pendulums are assumed
to be identical (l¼ l1 ¼ l2). The preliminary studies of the dynamics
of the system with parameters corresponding to the experimental
set-up revealed that due to the high stiffness of the base in the
vertical direction ky the degree-of-freedom describing the vertical
displacement of the structure Y can be neglected. Hence the
displacement of the pendulum pivot in vertical direction is equal
to the displacement of the pendulum base, Y ¼ Ry ¼ A sin ðΩtÞ.
Then the system can be simplified to three degrees-of-freedom
and Eq. (6) can be rewritten as

Mþ2mð Þ €Xþcx _XþkxXþþml

� €θ1 cos θ1� _θ
2
1 sin θ1þ €θ2 cos θ2� _θ

2
2 sin θ2

� �
¼ 0;

ml2 €θ1þml €X cos θ1�Ω2A sin Ωt sin θ1þg sin θ1

� �
þcθl

_θ1 ¼ 0;

ml2 €θ2þml €X cos θ2�Ω2A sin Ωt sin θ2þg sin θ2

� �
þcθl

_θ2 ¼ 0:

ð7Þ
After non-dimensionalization with respect to the natural fre-
quency ωn ¼ωn1 ¼ωn2 , so that τ¼ tωn the equations of motion
for the two pendulums can be rewritten in terms of new
parameters:

γx ¼
cx

ðMþ2mÞωn
; γθ ¼

cθ
mωn

; αx ¼
kx

ðMþ2mÞω2
n
;

a¼ m
Mþ2m

; p¼ A
l
; ω¼ Ω

ωn
: ð8Þ

Substituting (8) into (7)

x″þγxx
0 þαxxþ

þa θ″
1 cos θ1�θ0

12 sin θ1þθ″
2 cos θ2�θ0

22 sin θ2

� �
¼ 0;

θ″
1þx″ cos θ1þ 1�ω2p sin ðωτÞ� �

sin θ1þγθθ
0
1 ¼ 0;

θ″
2þx″ cos θ2þ 1�ω2p sin ðωτÞ� �

sin θ2þγθθ
0
2 ¼ 0; ð9Þ

where all of the system parameters are non-dimensional: γx is the
damping coefficient of the base in the horizontal direction, αx is
the stiffness coefficient, p is the forcing amplitude, ω is the forcing
frequency, τ is the time, a is a mass ratio. The last two equations
describe the motion of the two pendulums. There is no explicit
coupling term included. Instead the coupling effect occurs through
the vibration of the common support in the horizontal direction
(x″) and the parametric forcing applied in the vertical direction
(p sin ðωτÞ). The mutual interaction of the subsystems is repre-
sented schematically in Fig. 2(b).

There are two types of interactions in this system. Firstly, the
two pendulums tend to synchronize thanks to their identity and
common excitation. Secondly, the two pendulum subsystems are
not totally independent due to coupling effect of the elastic base.
The coupling coefficient is not given explicitly but the coupling
strength depends on the parameters of the system and their
mutual relation including mass ratio of single pendulum to the
total mass of the structure, stiffness and damping of the support. If
X1, X2, X3 denote the state variables of the first and second
pendulums and of the oscillating support, then the equations of
motion of the coupled system are given by

€X1 ¼ f ðX1ÞþvðX1ÞGðX1;X2ÞþqðX1ÞFðtÞ;
€X2 ¼ f ðX2ÞþvðX2ÞGðX1;X2ÞþqðX1ÞFðtÞ;
GðX1;X2Þ ¼ €X3 ¼ hðX3ÞþgðX1;X2Þ; ð10Þ
where f describes the dynamics of a single unforced pendulum,
F(t) is a harmonic function corresponding to the vertical forcing
applied at the base. GðX1;X2Þ represents the total coupling function
and corresponds to the horizontal acceleration of the base, v and q

are the trigonometric functions, linking G and F to €X1 ; €X2 . Function
h governs the dynamics of the base and function g includes
coupling terms. The total coupling strength depends on the
properties of the pendulum base and can be described by a set
of coefficients: ½γx;αx; a�.

3. Numerical study and analysis

In this section different types of synchronization described
theoretically in the introduction have been observed numerically
in the pendulum system. The relationship between the synchro-
nized states and base response is shown. The second subsection
demonstrates the influence of the synchronization type on the
rotational motion of the pendulums. Finally, the case of non-
identical pendulums is considered and the detected synchronized
states are discussed.

3.1. Types of synchronization

To understand the overall dynamics of the system described
above, a set of three second order differential equations needs to
be solved. For a single pendulum a solution can be obtained using
perturbation methods [35,34,17]. In this case due to the indirect
coupling between the equations, which does not allow for uncou-
pling and solving them separately, analytical solutions lead to very
complex expressions. Therefore, to study the dynamics and inter-
action between the two pendulums and their support the
response of the system has been simulated numerically in terms
of 6 basic state variables. The set of parameter values correspond-
ing to the experimental set-up has been used (Table 1).

After non-dimensionalization it corresponds to Table 2.
To detect the occurrence of synchronization in the system new

variables z and zn have been introduced, defined as

z¼ θ1þθ2; zn ¼ θ1�θ2 ð11Þ
For complete synchronization in antiphase z¼ 0 is required [19].
Complete synchronization in antiphase can be detected when
zn ¼ 0. Numerical simulations of the system response under
harmonic excitation revealed that the pendulums exhibit natural
tendency to synchronize, irrespective of initial conditions and
particular attractor. The correlation of phases between the two
pendulums and base motion is visible in Figs. 3–5 showing the
time histories of phase variables of the system x, θ1, θ2 for
different forcing parameters resulting in various synchronized
responses. These include synchronized in antiphase period one
rotation of both pendulums (Fig. 3), synchronized in phase rota-
tion (Fig. 4), rotation of one pendulum synchronized with oscilla-
tion of the second one (Fig. 5). Two types of synchronized
responses have been displayed in Fig. 6. The numerical phase
portraits of the synchronized pendulums are compared with the

Table 1
System parameters.

m (kg) l (m) M (kg) kx (N/m) cx (kg/s) cθ (kg/s)

0.709 0.271 11.700 5.61�105 622 0.0520

Table 2
Non-dimensional system parameters.

a αx γx γθ

0.05405 1181.3960 7.8808 0.01219
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experimental results and a very good correspondence can be
observed. If both pendulums start from the initial conditions
within the same rotational attractor the resultant motion is a
synchronized in phase rotation whereas for the opposite attractors
synchronization in antiphase can be observed. Similar behaviour
can be observed for oscillations. When the trajectories of rota-
tional or oscillatory motion coincide, the observed phenomenon is
the complete synchronization. If the two pendulums start within
different basins of attraction then the synchronization between
the oscillations and rotations can be observed. For such a case the
frequencies and phases of the two pendulums lock, while their
amplitudes remain independent, i.e. the phase synchronization
occur. Considering synchronization of rotational motion of pendu-
lums under arbitrary forcing conditions different arrangements of
the phase shift can occur.

In this case due to the periodic parametric forcing, only two
modes of synchronization between them are possible. To maintain
stable rotational response pendulums need to be in phase with the
external excitation, so that the movement of the base results in
energy input to the pendulum and consequently maintains the
rotational motion. Therefore both pendulums are required to rotate
in phase with each other (with zero phase shift) or in antiphase
(with a phase shift approaching π), to be in phase with the
excitation. For complete synchronization in phase,

θ1 ¼ θ2;
_θ1 ¼ _θ2;

€θ1 ¼ €θ2; ð12Þ
while for the synchronization in antiphase,

θ1 ¼ �θ2;
_θ1 ¼ � _θ2;

€θ1 ¼ � €θ2: ð13Þ
For the synchronized in phase case, the coupling function becomes

gðθ1;
_θ1;

€θ1;θ1;
_θ1;

€θ1Þ ¼ 2a θ″
1 cos θ1�θ02

1 sin θ1

� �
: ð14Þ

In contrast, for the synchronized in antiphase case, the coupling
function vanishes:

gðθ1;
_θ1;

€θ1;θ1;
_θ1;

€θ1Þ ¼ 0: ð15Þ
As a result, when substituting Eq. (13) into system equation (15) it
can been seen that

x¼ _x ¼ €x ¼ 0: ð16Þ
Consequently, there are no vibrations of the structure in the
horizontal plane. Even though a single rotating pendulum would
excite the base to oscillate in the horizontal direction (Fig. 5), this
effect can be avoided if the two pendulums rotate in antiphase. This
property of the synchronized state to damp the lateral vibrations has
been confirmed in numerical simulations (Fig. 3). Fig. 7 shows the
phase planes of the horizontal oscillations for the two pendulums
rotating in antiphase as opposed to the rotation in phase or rotation
of a single pendulum while the other one oscillates. The vibrations
initially induced in the structure are represented by a black line and
correspond to the transient response. As the pendulums reach the
steady state, so does the oscillation of the support. It settles down on
a periodic attractor (for pendulums in phase or a single pendulum
rotating) or goes to equilibrium at zero (for synchronized in
antiphase case), denoted by red colour. For the in phase synchroniza-
tion the horizontal response of the base is similar to the single
pendulum, however the amplitude of oscillation is magnified, due to
the effects of both pendulums summing up. If one of the pendulums
oscillates and the other one rotates, the response will be a period two
motion due to the periodicity of the oscillation.

3.2. Influence of the synchronization type on the rotational motion of
the pendulums

Synchronization of the two pendulums occurs due to the work
done by the synchronizing torque with which the support acts on
each pendulum [11,10]. In this case synchronizing torque consists
of an external forcing part and the component from the vibration
induced in the base and is given by

Ti
S ¼ml €X cos θiþ €Y sin θi

� �
¼ml €X cos θi�Ω2A sin Ωt sin θi

� �
; ð17Þ

which in terms of non-dimensional parameters becomes

tiS ¼ €x cos θiþ €y sin θi ¼ €x cos θi�p sin ωτ sin θi; ð18Þ
where the first part of the expression corresponds to the coupling
effect of the base and contributes to synchronization between
pendulums, while the second part represents the effect of the
common excitation and results in synchronization with the har-
monically excited base.

Fig. 4. Numerical time history of horizontal vibration of the base and angular
displacements θ1, θ2 for p¼0.07, ω¼1.8, showing complete synchronization in
antiphase of the period one rotation of both pendulums; phase synchronization
with the vibrating base x.

Fig. 5. Numerical time evolution of horizontal vibration of the base and angular
displacements θ1, θ2 for p¼0.07, ω¼1.8, showing phase synchronization of period
one rotation of pendulum 1 with oscillation of pendulum 2 (locking ratio 2:1).

Fig. 3. Numerical time evolution of horizontal vibration of the base and angular
displacements θ1, θ2 for p¼0.07, ω¼2, showing complete synchronization of period
one rotations in antiphase between the two pendulums.
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From Eq. (16) for the two pendulums rotating in opposite
directions, i.e. synchronized in antiphase €x ¼ 0. Therefore, there is
no energy transfer between the two pendulums.

As a consequence all the energy input by the excitation is being
transferred by the vertical movement of the base to the rotating
pendulums, while no energy is being used on exciting the base in
the horizontal direction. Comparing the in phase and in antiphase
synchronization, the latter one represents more beneficial state for
many applications as it maintains the system at the lower energy

level. Consequently, the minimum amount of energy which is
required to maintain a stable rotation of the pendulums in phase
with each other is higher than the one for antiphase motion. To
confirm that lower limit of existence of rotational motion in forcing
parameters phase space has been studied for different cases.

Fig. 8(a) shows the numerically computed saddle-node (SN)
bifurcation curve in the parameter space ðω; pÞ, corresponding to
the lower limit of existence of rotational solutions for the system
considered. Three cases are compared, a single rotating pendulum

Fig. 6. Numerical results for ω¼2 , p¼0.07 showing (a) synchronized in anti-phase period one rotations, (b) rotation synchronized with oscillation for ω¼2 , p¼0.07 and
(c, d) experimental verification, f¼2 Hz, A¼0.012 m.

Fig. 7. Horizontal vibrations of the structure induced by different responses of the pendulum system: (a) one of the pendulums rotating while the other one oscillates;
(b) synchronized in phase rotation of two pendulums; (c) synchronized in antiphase rotation of two pendulums. Black line denotes the transient response of the base and red
the steady state response: (a) period two oscillation, (b) period one oscillation and (c) equilibrium at 0. (For interpretation of the references to colour in this figure caption,
the reader is referred to the web version of this paper.)
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(i.e. the other one has been fixed), two pendulums rotating in the
same direction and two pendulums rotating in opposite directions.
At the right side of the figure the curves seem to overlap, however
from Fig. 8(b) containing zoomed plot area the difference between
the curves can be seen. It is visible that introducing the two
pendulums rotating in antiphase shifts the lower limit of rota-
tional motion down the p-axis with respect to the case of one
independently rotating pendulum. If the pendulums synchronize
in phase with each other, then the limit curve shifts upwards. For a
very stiff system like the one corresponding to the experimental
rig (Table 2), this difference is not significant. To investigate what
would be the effect of the synchronization mode on existence of
rotational motion, if structural changes were introduced, two
further cases were considered in the numerical study.

Firstly, the stiffness of the base has been decreased by factor 10
and the computations of the lower boundary of rotation were
repeated. In Fig. 8(d) three separate characteristics appearing in
the same order as in Fig. 8(b) can be clearly distinguished.
Similarly Fig. 8(e) shows the boundary curves for stiffness para-
meter decreased by factor 100. There is a significant difference
between them, which can be observed in the whole frequency
range. The rotational solution synchronized in antiphase starts
existing for much lower forcing amplitudes compared to a single
rotating pendulum, while for the synchronized in phase pendu-
lums much higher forcing amplitudes are required.

To understand the change in the pendulum dynamics caused
by the decreased lateral stiffness of the pendulum support the
horizontal vibrations in the base have been studied. For the initial
stiff system the horizontal response of the base is three orders
smaller than the vertical excitation supplied to the system (Fig. 8(c)).
For the case of two pendulums rotating in antiphase the base

remains horizontally still. A single pendulum rotating while
keeping the other one fixed excites the base to oscillate. If two
pendulums rotate in phase, their effect on the base sums up and as
a result the amplitude of the horizontal oscillation of the support
increases. Fig. 8(c, f) shows how the amplitude of the base
oscillations increases with the decreasing stiffness of the support.
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Fig. 8. Left: numerically computed in MATCONT, saddle node bifurcation curves corresponding to lower boundaries of rotation for two pendulums counter rotating (blue),
rotating in the same direction (green) and a single rotating pendulum (red) and varying base stiffness. (a) Original value of αx , (b) zoomed area of (a), (d) for αx=10, (e) for
αx=100. Right: phase planes comparing the oscillations of the base in the horizontal direction for ω¼2, p¼0.2 and a different stiffness, (c) αx , (f) αx=100; two pendulums
rotating in phase (black), rotating in antiphase (blue), single pendulum rotating (red). (For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)

Fig. 9. Evolution of the pendulum displacement (top), phase difference and
synchronizing torque (bottom) for pendulums with different initial conditions for
ω¼2.5, p¼0.2, αx=100. (a) Synchronization in antiphase achieved for counter
rotating pendulums, with initial conditions _θ10 ¼ 2:5; _θ10 ¼ �2:5 and z0 ¼ �1.
(b) Lack of synchronization for _θ10 ¼ 2:5; _θ10 ¼ 2:5, zn0¼1.
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Reducing the stiffness by factor 100 results in the amplitude of
base oscillation increasing 100 times.

Apart from the base stiffness, the dynamic responses of the support
depend on rotational speed of the pendulum _θ and indirectly on the
forcing frequency ω. For rotational motion of both pendulums at
higher frequencies, the resultant force acting on the base increases,
which results in higher amplitude of the horizontal base oscillations
and faster energy transfer between the pendulums. Therefore, the
difference between the antiphase and the in-phase limit of rotational
motion is mostly visible for high ω. To see how this fact affects the
evolution of two rotational solutions, initially shifted in phase, a set of
numerical simulations has been performed on pendulums rotating in
the same and the opposite direction. In the first case the pendulums
have been given the following initial conditions, θ10 ¼ 1:5,
θ20 ¼ �2:5, i.e. z0 ¼ �1, and opposite angular velocities _θ10 ¼ 2:5,
_θ10 ¼ �2:5, to ensure counter rotation. Fig. 9(a) shows the resultant
time histories of the angular displacements and phase variable z. After
the transient time the initial phase shift disappears, z goes to zero and
pendulums synchronize completely in antiphase.

The evolution of the total synchronization torque shows how
from initially high value it decays as the synchronized state is
achieved. Fig. 9(b) depicts the results for two pendulums rotating
initially in the same directionwith the same phase shift as in the first
case zn0 ¼ 1 and θ10 ¼ 1:5, θ20 ¼ 2:5; and with the same rotational
speed _θ10 ¼ 2:5, _θ10 ¼ �2:5. In this case the synchronized state is
not achieved and one of the pendulums loses the rotational motion.
This difference between the behaviour the two pendulums rotating
in the opposite and in the same direction confirms that the
synchronization in antiphase is a preferred configuration for the
system, as it requires less energy to be maintained and can be
initiated easier than the synchronization in phase.

3.3. Phase synchronization of non-identical pendulums

In practical application we often have to do with imperfections of
mechanical parts. Hence this subsection deals with a case of non-
identical pendulums, which results in a less obvious type of
synchronization. To study the synchronization of non-identical
pendulums the difference in their lengths has been introduced,
which results in different natural frequencies. The mismatch of the
parameters is given by

δ¼ l1� l2; ð19Þ
or as a non-dimensional number with regard to the original length,

Δ¼ l1� l2
l1

: ð20Þ

The results from the numerical studies of counter rotating pendu-
lums showing the time histories of the phase sum z for different
values of parameter mismatch have been summarized in Fig. 11. The

system does not achieve complete synchronization state any more as
z is non-zero. Instead

lim
t-1

zoϵ; ð21Þ

where ϵ is a small number. The phase sum initially oscillates with
high amplitude and finally settles down to periodic oscillations as the
transient elapses, with a small finite amplitude dependent on the
parameter mismatch. The transient response together with the
steady state oscillation of the phase sum corresponding to different
values of length mismatch is also shown in Fig. 11.

Such type of synchronization has been defined by Kapitaniak
et al. [15] as ‘practical synchronization’. Some works refer to it as
‘almost complete synchronization’ [14]. If the difference in lengths
is increased further, z increases until the critical value Δ¼ 0:475
when the second pendulum loses its rotational motion and the
responses of the two pendulums become asynchronous. In the case
of two pendulums rotating in the same direction, desynchronizing
occurs earlier. For the stiff system considered here, the limit value is
Δ¼ 0:47. The change of the length of one of the pendulums results
in different natural frequencies and in consequence the shifted
resonance structure. Therefore, when increasing the forcing ampli-
tude, the transition to chaos does not occur at the same time for

Fig. 10. Comparison of the bifurcation diagrams for identical and non-identical pendulums for ω¼2 and changing amplitude of forcing, where black denotes response of
pendulum 1 (fix length) and red pendulum 2 (whose length has been changed). (For interpretation of the references to colour in this figure caption, the reader is referred to
the web version of this paper.)

Fig. 11. Time histories of phase variable z and corresponding phase planes for different
values of parameter mismatch, Δ¼ 0:04, Δ¼ 0:077, Δ¼ 0:15, for ω¼2, p¼0.07.
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both pendulums. The shorter pendulum escapes faster, causing an
asynchronous region in the parameter space, when one of the
pendulums is still in the periodic rotational mode while the other
one behaves chaotically. The difference between identical and
different pendulums is visible in their bifurcation diagrams
(Fig. 10). For the Δ¼ 0 case complete synchronization is maintained
for all values of p, while for Δ¼ 0:077 the pendulums are synchro-
nized only in certain parameter ranges, where their basins of
attraction overlap. Besides for the non-identical case complete
synchronization cannot be achieved, instead in the synchronous
regions the phase shift is always present, which is mostly visible for
the oscillatory solutions in Fig. 10.

4. Experimental results

4.1. Experimental set-up

To verify the numerical results on different synchronization
modes observed and study their correspondence to the real
conditions, the set of experiment has been conducted on the rig
corresponding to the parameters used in the numerical simula-
tions. The studies have been carried out in the Centre of Applied
Dynamics Research at the University of Aberdeen.

The experimental set-up used in this work consists of the
system of two pendulums fixed on the common base and the
electrodynamic shaker. The pendulum rig has been mounted on an
electrodynamic shaker (Fig. 12). The oscillation of the shaker
provides a parametric excitation to the system. The pendulum
rig consists of two independent pendulums with bob masses at
the ends, threaded to thin steel rods. The bob masses are brass
disks with a threading inside. The threaded connection with the
rod allows easy modification of the set-up by exchanging the
connecting rod to change the length of the pendulum. Therefore,
the system allows us to study the response of two identical as well
as non-identical pendulums. The rods are fixed to two indepen-
dent concentric shafts, supported by needle bearings at each side
to minimize the friction. Each shaft has an encoder attached to it
and a gear with a belt coupling the shaft to the servo-motor. The
measurements from the encoders are input to the PC via NI board
and processed in LabView (Fig. 12), where based on the inputs the
control signal can be generated. The excitation to the shaker has
been provided by a WaveTek generator. The interactions in such
pendulum shaker system have been studied by Xu [33], who
developed a complex model of the system including mechanical
and electrical degrees-of-freedom.

The response of the pendulums has been observed for different
initial conditions and changing forcing parameters. At first

harmonic excitation with varying frequency and amplitude has
been supplied to the shaker and the numerically obtained results
have been verified experimentally. Then the system has been
modified to demonstrate the change in the response, if the lengths
of the pendulums vary.

4.2. Experimental results

When studying the response of the system under harmonic
excitation no complete synchronization between the two pendu-
lums can be observed. Due to the natural imperfections of the
system the sum of phases is never constant and equal to zero;
instead oscillates around a small value. The magnitude of the
phase shift is different depending on the forcing frequency. For
higher frequencies, the system approaches the complete synchro-
nization (z close to 0) as shown in Fig. 13(i), while for the low
frequencies the phase shift increases (Fig. 13(c)). In experimental
conditions, the excitation provided to the structure is never
perfectly harmonic.

Noise from the system is always present in the excitation of the
shaker, however its intensity varies depending on the frequency. In
general the shaker is more sensitive when working in the low
frequency range below 1.5 Hz. Additionally, shaker as a dynamic
system interacts with the rotating masses of the pendulums which
causes perturbations to the harmonic signal, as discussed in [33].
As a consequence the experimentally observed synchronized state
is an imperfect complete synchronization.

Finally, length of one of the pendulums has been reduced.
Similar to the numerical study three different values of parameter
mismatch have been considered: Δ¼ 0:04, δ¼ 0:077, δ¼ 0:15. The
results of the experiments with the two pendulums of different
lengths confirmed numerical predictions. After the transient time
the phase synchronization state has been observed, with the phase
shift increasing with the length difference (Fig. 14). On the other
hand, the influence of the length mismatch on the synchronization
is smaller in the experimental conditions than for the numerical
predictions. The responses of the system for different values of
length mismatch Δ in the experimental conditions differ between
each other less than in the numerical case, where pendulums were
initially modelled to be identical.

5. Conclusions

The occurrence of the theoretically discussed stable synchro-
nous states has been studied. The system considered consisted of
two pendulums with a coupling common support. It has been
demonstrated numerically and experimentally that even if the

servo-motors

pendulum masses 1, 2

supporting structure

electromagnetic shaker

motor
driver PCI-6251

computer

waveform
generatorshaker

encoder signal

sensor signal

control

Fig. 12. (a) Photography of the experimental rig and (b) block diagram of the measurements set-up.
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coupling strength of the structure is low, the system exhibits a
natural tendency to synchronize. Results showing different types
of synchronized solutions have been presented. Only two phase
configurations of synchronized rotational motion are possible for
the considered system of identical pendulums: complete synchro-
nization in phase or in antiphase.

The difference between the synchronization in phase and in
antiphase between the two rotating pendulums has been dis-
cussed. It has been shown that the latter one has a property of
damping lateral vibrations of the supporting structure. It repre-
sents a more desirable response as it maintains the system at a
lower energy level. Consequently less energy is required to initiate
and maintain a synchronized in antiphase rotation than for the
rotation in phase or rotation of a single pendulum, while the other
one remains fixed. It has been shown that the type of synchroni-
zation influences the stability of rotational motion by shifting the
bifurcation curves. The lower limit of rotational motion is of a
particular interest when considering energy harvesting from the

system. When pendulums require less energy input to sustain
rotation, the energy excess can be extracted. This effect is more
visible as the stiffness of the supporting structure decreases, and
mutual interactions between the pendulums and the structure
enhance. By studying the response of the base, it has been shown
that the rotating pendulum excites the base to oscillate, unless two
pendulums rotate in antiphase.

It has been demonstrated that the synchronized state can be
preserved also in the presence of noise in experimental condi-
tions or when the pendulums considered are not identical. For the
non-identical case no complete synchronization is possible,
instead phase locking and phase synchronization occur, with the
phase shift oscillating with an amplitude dependent on the value
of the parameter mismatch. The critical value of the parameter
mismatch has been identified, beyond which the responses
become asynchronous. The influence of the parameter mismatch
on the synchronization has been more visible in idealized numer-
ical conditions than in noisy experimental conditions, where

Fig. 13. Synchronized rotation for harmonic excitation from the shaker (a)–(c) f¼1.5 Hz, A¼0.012 m, (d)–(f) f¼2 Hz, A¼0.012 m, (g)–(i) f¼2.5 Hz, A¼0.009 m.

A. Najdecka et al. / International Journal of Non-Linear Mechanics 70 (2015) 84–94 93



natural imperfections are always present and system demon-
strates imperfect complete synchronization.
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