
Practical systems of any sort have a 
set of desired working conditions, and so 
while designing an engineering device one 
typically assumes that it will operate in such 
conditions. Unfortunately, when a system 
is nonlinear this state cannot always be 
guaranteed and one must bear in mind that 
undesired working conditions might dam-
age the device. Such a situation may occur 
while modeling biological or geophysical 
systems, for instance. One may find that 
the system under consideration operates 
in a number of different states with differ-
ent meanings – like for example life and 
death in biological systems or good or bad 
weather in geophysical ones. Such situa-
tions are usually modeled and tackled using 
the mathematical concept of attractors. 

The notion of attractor is the fundamental 
concept in the theory of dynamical systems. 
Consider the dynamical system dx/dt = f(x) 
where f(x) is a function which fulfils all the 
conditions necessary for the above equation 
to have a unique solution, x belonging to Rn 
– this n-dimensional real space is called a 
phase space of the equation. The minimal 
subset of Rn, A, with the property that x(t) 
→ A as t → ∞, is called an attractor. Typical 
attractors are fixed points (equilibria), limit 
cycles (periodic behavior), tori (quasiperi-
odic behavior) and strange attractors (cha-
otic behavior).

One of the typical features of a nonlinear 
system is the existence of co-existing attrac-
tors, i.e. for a given set of parameter values, 
depending on initial conditions, the system 
may move toward a different attractor. This 
feature is called multistability. To under-
stand the dynamical behavior of such sys-
tems it is necessary to calculate the basin of 
attraction for each coexisting attractor. In a 
number of cases the structure of the basins 
and their bifurcations leads to unexpected 
dynamical uncertainty; a priori one can-
not predict which attractor the system will 
evolve based on. Some of these cases are 
described in this paper. 

One of the simplest mechanical systems 
with more that one possible attractor is the 
inverted pendulum. As shown below, three 
equilibrum positions A, B and C are possible. 
Positions A and C are attractors and B is an 
unstable equilibrium. The attraction basins 
of attractors A and C are shown in blue and 
yellow, respectively. The basin boundaries 
are well-defined as straight lines. Assume 
that the initial conditions can be set with 
a precision ε, so if the initial conditions 
are not within the ε-wide bands around the 
boundaries one can easily predict towards 
which attractor the system will go. 

A more complicated case occurs when the 
basins’ boundary has a fractal structure. An 
example of such a case is to be found in the 
dynamics of the an externally excited pen-
dulum as seen on Fig. 3. There exist exci-
tations for which the pendulum performs 

Unstable as a Pendulum

Can we predict the behavior of evolving 
systems? While it is sometimes easy 
to do so, as in the case of an ordinary, 
slightly tilted pendulum, there are some 
systems whose ultimate state 
is practically impossible to ascertain
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Figure 1: 
An inverted pendulum 
and the attraction 
basins of its attractors: 
if the initial state 
is in the blue areas, 
the system will eventually 
come to rest at point A 
(initial states in the yellow 
areas tend to develop 
towards point C)
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clockwise and counterclockwise rotation. 
These two periodic attractors are represent-
ed respectively as A and B and their basins 

of attraction are shown in purple and light 
blue, respectively. The basin boundary here 
has a fractal structure. Large domains of 
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Figure 2: 
the basins of attraction 

of the attractors 
for the dynamic system 

of equations shown
 in the text. The four 
symmetrical chaotic 

attractors initially seen 
in (a) as dark grey, green, 

yellow, and red regions, 
are preserved 

at a small coupling (b), 
but disappear when 

the coupling increases 
(c,d). The attractors far 
from the main diagonal 

x = y are destroyed first. 
If the system 

is evolving towards one 
of the attractors that 

subsequently becomes 
destroyed, it is impossible 

to predict to which 
of the remaining 

attractors the system 
trajectory will switch

d1 = d2 = 0.11, x (-2, 2), y (-2, 2)d1 = d2 = 0, x (-2, 2), y (-2, 2)

d1 = d2 = 0.65, x (-2, 2), y (-2, 2)d1 = d2 = 0.26, x (-2, 2), y (-2, 2)

d1 = d2 = 0.65, x (0.5, 1.5), y (0.5, 1.5)d1 = d2 = 0.65, x (-0.5, 1.5), y (-0.5, 1.5)
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the phase space have the property that in 
any neighborhood of a given point which 
belongs to the basin of one attractor, there 
exist points which belong to the basin of the 
other attractor. In such domains one cannot 
predict the fate of the system trajectory only 
knowing initial conditions with ε uncertain-
ty, although there are certain domains, for 
example the neighborhoods of the attractors, 
in which such prediction is indeed possible. 

The worst predictability is seen in dynami-
cal systems which can actually change attrac-
tors, as a result of the destruction of the 
original attractors or through small (theoreti-
cally infinitely small) external perturbation. 
These cases will be described using the exam-
ple of the following discrete dynamical system 
(a two-dimensional piecewise linear map):
xn+1 = pxn + l/2 (1 – p/l) (|xn + 1/l| – |xn – 1/l|) + d1 (yn – xn)

yn+1 = pyn + l/2 (1 – p/l) (|yn + 1/l| – |yn – 1/l|) + d2 (xn – yn)

For d12 = 0, Fl,p(0) has four symmetrical 
chaotic attractors A(i), i = 1; 4 inside I x I, 
where I = [2; 2]. These attractors shown 
together with their basins of attraction in 
Figure 2(a). The basins of attractors A1 (dark 
grey), A2 (red), A3 (green) and A4 (yellow) are 
shown in dark blue, purple, light blue, and 
light grey, respectively while the basin of 
attraction of infinity is shown in navy blue. 

As the computer experiment presented in 
Figure 2b–d shows, such types of attractors 
are preserved at a small coupling |d1,2| << 
1 (Figure 2b), but they disappear when the 
coupling increases (Figure 2c,d). First the 
attractors far from the main diagonal x = y, 
i.e. A(2) and A(4), are destroyed (Figure 2c). 

Assume that a dynamical system is evolv-
ing on one of its attractors, but this attractor 
becomes destroyed. It is then impossible to 
predict to which of the remaining attrac-
tors the system trajectory will switch. The 
destruction of one attractor when at least 
two other attractors remain is called a mul-
tiple choice bifurcation, which is a source of 
dynamical unpredictability. 

In Figure 2d we observe that x = y and 
two-dimensional attractors are reduced to 
two symmetrical one-dimensional attractors 
at the main diagonal x = y. As can be seen 
in the enlargements shown in Figure 2e–f, in 
any neighborhood of attractor A (or B) there 
are points which belong to the basin of anoth-
er attractor B (or A). In such a case the basin 
of A (B) is riddled by the basin of B (or A). The 

riddled basins give another possible dynami-
cal uncertainty, as a system trajectory evolv-
ing on one attractor can switch attractors as a 
result of small external perturbation. 

To recapitulate, multistability has been 
found to be common in dynamical systems 
– mechanical systems with impacts and dry 
friction, electrical nonlinear circuits, bio-
logical and economical models being typical 
examples. In such systems one can expect 
to find one of the dynamical uncertainties 
described here. Particularly in systems 
with noise, such uncertainties can lead to 
unexpected phenomena, in most cases with 
dramatic results. Dynamical uncertainties 
are currently a main topic of extensive world-
wide research. 
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Figure 3: 
the setup of 
an externally excited 
pendulum (above) 
and the attraction basins 
of its attractors 
in the space of initial 
states (below)
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